Pharmacokinetics (PK) of antisense oligonucleotides (ASOs) is characterized by rapid distribution from plasma to tissue and slow terminal plasma elimination driven by re-distribution from tissue. Quantitative understanding of tissue PK and RNA knockdown for various ASO chemistries, conjugations, and administration routes is critical for successful drug discovery. Here, we report concentration-time and RNA knockdown profiles for a gapmer ASO with locked nucleic acid ribose chemistry in mouse liver, kidney, heart, and lung after subcutaneous and intratracheal administration. Additionally, the same ASO with liver targeting conjugation (galactosamine--acetyl) is evaluated for subcutaneous administration. Data indicate that exposure and knockdown differ between tissues and strongly depend on administration route and conjugation. In a second study, we show that tissue PK is similar between the three different ribose chemistries locked nucleic acid, constrained ethyl and 2'--methoxyethyl, both after subcutaneous and intratracheal administration. Further, we show that the half-life in mouse liver may vary with ASO sequence. Finally, we report less than dose-proportional increase in liver concentration in the dose range of 3-30 μmol/kg. Overall, our studies contribute pivotal data to support design and interpretation of ASO studies, thereby increasing the probability of delivering novel ASO therapies to patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899043 | PMC |
http://dx.doi.org/10.1016/j.omtn.2024.102133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!