The paper reports a series of experimental and numerical data of destructive stub column tests on additively manufactured steel parts stiffened by surface sinusoidal wave patterns. The specimens were made in 316L stainless steel and manufactured by selective laser melting (SLM). The experimental tests covered five tensile coupon tests, fourteen square hollow section (SHS) stub column tests and measurements of geometric imperfections of the stub columns. Numerical models incorporating the measured material and geometric properties were developed and analysed via GMNIA approach. The validity of the numerical models is demonstrated by their accurate replications of the load-end shortening responses of the tested specimens. The reported dataset will contribute to the stability design and characterisation of thin-walled steel plated structures with advanced stiffening patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900762 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110193 | DOI Listing |
Materials (Basel)
January 2025
College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
Due to the uncertainty of material properties of plate-like structures, many traditional methods are unable to locate the impact source on their surface in real time. It is important to study the impact source-localization problem for plate structures. In this paper, a data-driven machine learning method is proposed to detect impact sources in plate-like structures and its effectiveness is tested on three plate-like structures with different material properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan.
Application of high-heat input welding on high-tensile strength steels causes deterioration of mechanical properties of the welded joint, due to softening and grain coarsening in the heat-affected zone (HAZ). In this study, low-heat input narrow-gap hot-wire laser welding was applied to 12 mm thick 780 MPa-class high-tensile strength steel plate. Conditions were optimized based on microstructural observations of joints produced at various welding speeds.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.
Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.
View Article and Find Full Text PDFZhongguo Gu Shang
January 2025
Ningbo Beilun People's Hospital, Ningbo 315800, Zhejiang, China.
Objective: To investigate the effects of bone density, plate bending degree and proximal screw type on the stress fracture of clavicle hook.
Methods: Three sows weighing between 45 and 50 kg were selected, from which a total of 40 rivs were collected. The 15 ribs of sows were divided into 3 groups according to bone density and bone hardness with 5 rivs in each group.
Objective: To evaluate the short-term clinical efficacy of external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures (AO-23C type), based on the principles of Chinese osteosynthesis (CO).
Methods: Forty-eight patients with unstable distal radius fractures between January 2022 and February 2023 were retrospectively analyzed and divided into the CO external fixation group and internal fixation group. CO external fixation group consisted of 25 patients, including 7 males and 18 females, aged from 37 to 56 years old with an average of ( 52.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!