Long noncoding RNAs (lncRNAs) are important because they are involved in a variety of life activities and have many downstream targets. Moreover, there is also increasing evidence that some lncRNAs play important roles in the expression and regulation of γ-globin genes. In our previous study, we analyzed genetic material from nucleated red blood cells (NRBCs) extracted from premature and full-term umbilical cord blood samples. Through RNA sequencing (RNA-Seq) analysis, lncRNA H19 emerged as a differentially expressed transcript between the two blood types. While this discovery provided insight into H19, previous studies had not investigated its effect on the γ-globin gene. Therefore, the focus of our study was to explore the impact of H19 on the γ-globin gene. In this study, we discovered that overexpressing H19 led to a decrease in HBG mRNA levels during erythroid differentiation in K562 cells. Conversely, in CD34+ hematopoietic stem cells and human umbilical cord blood-derived erythroid progenitor (HUDEP-2) cells, expression increased. Additionally, we observed that H19 was primarily located in the nucleus of K562 cells, while in HUDEP-2 cells, H19 was present predominantly in the cytoplasm. These findings suggest a significant upregulation of due to H19 overexpression. Notably, cytoplasmic localization in HUDEP-2 cells hints at its potential role as a competing endogenous RNA (ceRNA), regulating γ-globin expression by targeting microRNA/mRNA interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03630269.2023.2284950DOI Listing

Publication Analysis

Top Keywords

γ-globin gene
12
hudep-2 cells
12
h19
8
erythroid differentiation
8
umbilical cord
8
k562 cells
8
cells
7
γ-globin
5
long non-coding
4
non-coding rna
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.

View Article and Find Full Text PDF

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

The novel allele HLA-DQA1*02:39 differs from HLA-DQA1*02:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!