targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs.

Acta Biochim Biophys Sin (Shanghai)

National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.

Published: March 2024

Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in regulation. The gain/loss function of in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of leads to the opposite results. These findings indicate that plays an important regulatory role in myogenesis in both mice and pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984873PMC
http://dx.doi.org/10.3724/abbs.2024011DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
proliferation differentiation
8
mice pigs
8
muscle development
8
regulatory role
8
role myogenesis
8
muscle
5
targeted h3k27me3
4
h3k27me3 regulates
4
regulates myoblast
4

Similar Publications

Unveiling the relation between swallowing muscle mass and skeletal muscle mass in head and neck cancer patients.

Eur Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO box 30.001, Groningen, 9700RB, The Netherlands.

Purpose: Sarcopenia, characterized by loss of skeletal muscle mass (SMM) and strength, often leads to dysphagia in the elderly. This condition can also worsen treatment outcomes in head and neck cancer (HNC) patients, who are susceptible to swallowing difficulties. This study aimed to establish the correlation between swallowing muscle mass (SwMM) and SMM in HNC patients.

View Article and Find Full Text PDF

The purpose of this study is to evaluate the effectiveness of intensity-modulated radiation therapy (IMRT) combined with periorbital triamcinolone acetonide injection in treating thyroid eye disease (TED) patients with active extraocular muscle but low CAS. The retrospective observational study was conducted. A total of 156 eligible patients were selected from the TED patient database of the Ophthalmology Department of West China Hospital of Sichuan University.

View Article and Find Full Text PDF

This study aimed to investigate the role of myosteatosis, sarcopenia, and perioperative serum biomarkers as independent predictors of major complications within 180 days following radical cystectomy (RC) for muscle-invasive bladder cancer (MIBC). We retrospectively analyzed of 127 MIBC patients who underwent RC between 2013 and 2023 at a single institution. Preoperative body composition was assessed using CT scans at the L3 vertebral level to measure psoas muscle density (PMD), skeletal muscle density (SMD), axial muscle density (AMD), and muscle indices.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!