Pluripotent stem cells (PSCs) hold enormous potential for treating multiple diseases owing to their ability to self-renew and differentiate into any cell type. Albeit possessing such promising potential, controlling their differentiation into a desired cell type continues to be a challenge. Recent studies suggest that PSCs respond to different substrate stiffness and, therefore, can differentiate towards some lineages via Hippo pathway. Human PSCs can also differentiate and self-organize into functional cells, such as organoids. Traditionally, human PSCs are differentiated on stiff plastic or glass plates towards definitive endoderm and then into functional pancreatic progenitor cells in the presence of soluble growth factors. Thus, whether stiffness plays any role in differentiation towards definitive endoderm from human pluripotent stem cells (hPSCs) remains unclear. Our study found that the directed differentiation of human embryonic stem cells towards endodermal lineage on the varying stiffness did not differ from the differentiation on stiff plastic dishes. We also observed no statistical difference between the expression of yes-associated protein (YAP) and phosphorylated YAP. Furthermore, we demonstrate that lysophosphatidic acid, a YAP activator, enhanced definitive endoderm formation, whereas verteporfin, a YAP inhibitor, did not have the significant effect on the differentiation. In summary, our results suggest that human embryonic stem cells may not differentiate in response to changes in stiffness, and that such cues may not have as significant impact on the level of YAP. Our findings indicate that more research is needed to understand the direct relationship between biophysical forces and hPSCs differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.12151 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!