For children with complex congenital heart problems, cardiac allotransplantation is sometimes the best therapeutic option. However, availability of hearts for pediatric patients is limited, resulting in a long and growing waitlist, and a high mortality rate while waiting. Cardiac xenotransplantation has been proposed as one therapeutic alternative for neonates and infants, either in lieu of allotransplantation or as a bridge until an allograft becomes available. Scientific and clinical developments in xenotransplantation appear likely to permit cardiac xenotransplantation clinical trials in adults in the coming years. The ethical issues around xenotransplantation of the heart and other organs and tissues have recently been examined, but to date, only limited literature is available on the ethical issues that are attendant with pediatric heart xenotransplantation. Here, we summarize the ethical issues, focusing on (1) whether cardiac xenotransplantation should proceed in adults or children first, (2) pediatric recipient selection for initial xenotransplantation trials, (3) special problems regarding informed consent in this context, and (4) related psychosocial and public perception considerations. We conclude with specific recommendations regarding ethically informed design of pediatric heart xenotransplantation trials.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0000000000004968DOI Listing

Publication Analysis

Top Keywords

cardiac xenotransplantation
16
ethical issues
12
xenotransplantation
9
clinical trials
8
pediatric heart
8
heart xenotransplantation
8
xenotransplantation trials
8
pediatric
5
pediatric cardiac
4
xenotransplantation recommendations
4

Similar Publications

Introduction: There is no standard protocol for management of organ preservation for orthotopic, life-sustaining cardiac xenotransplantation, particularly for hearts from pediatric sized donors. Standard techniques and solutions successful in human allotransplantation are not viable. We theorized that a solution commonly used in reparative cardiac surgery in human children would suffice by exploiting the advantages inherent to xenotransplantation, namely the ability to reduce organ ischemic times by co-locating the donor and recipient.

View Article and Find Full Text PDF

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI.

Carbohydr Polym

March 2025

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.

View Article and Find Full Text PDF

Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation.

J Heart Lung Transplant

January 2025

Division of Cardiac Surgery, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA. Electronic address:

Background: Genetically engineered porcine hearts may have an application for infants in need of a bridge to cardiac allotransplantation. The current animal model that resulted in 2 human applications has been validated in adult non-human primates only. We sought to create an infant animal model of life sustaining cardiac xenotransplantation to understand limitations specific to this age group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!