We report the successful fabrication of a pharmaceutical cellular bank (PCB) containing magnetotactic bacteria (MTB), which belong to the Magnetospirillum gryphiswaldense MSR1 species. To produce such PCB, we amplified MTB in a minimal growth medium essentially devoid of other heavy metals than iron and of CMR (Carcinogenic, mutagenic and reprotoxic) products. The PCB enabled to acclimate MTB to such minimal growth conditions and then to produce highly pure magnetosomes composed of more than 99.9% of iron. The qualification of the bank as a PCB relies first on a preserved identity of the MTB compared with the original strain, second on genetic bacterial stability observed over 100 generations or under cryo-preservation for 16 months, third on a high level of purity highlighted by an absence of contaminating microorganisms in the PCB. Furthermore, the PCB was prepared under high-cell load conditions (9.10 cells/mL), allowing large-scale bacterial amplification and magnetosome production. In the future, the PCB could therefore be considered for commercial as well as research orientated applications in nanomedicine. We describe for the first-time conditions for setting-up an effective pharmaceutical cellular bank preserving over time the ability of certain specific cells, i.e. Magnetospirillum gryphiswaldense MSR1 MTB, to produce nano-minerals, i.e. magnetosomes, within a pharmaceutical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903015 | PMC |
http://dx.doi.org/10.1186/s12934-024-02313-4 | DOI Listing |
ACS Omega
December 2024
Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
MSR-1 can biomineralize the magnetosome, nanoscale magnetite (FeO) surrounded by a lipid bilayer, inside the cell. The magnetosome chain(s) enables MSR-1 to move along with the magnetic field (magnetoaerotaxis). Due to its unique characteristics, MSR-1 has attracted attention for biotechnological applications.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain.
Magnetotactic bacteria have been proposed as ideal biological nanorobots due to the presence of an intracellular chain of magnetic nanoparticles (MNPs), which allows them to be guided and controlled by external magnetic fields and provides them with theragnostic capabilities intrinsic to magnetic nanoparticles, such as magnetic hyperthermia for cancer treatment. Here, we study three different bacterial species, (MSR-1), (AMB-1), and (MV-1), which synthesize magnetite nanoparticles with different morphologies and chain arrangements. We analyzed the impact of these parameters on the effective magnetic anisotropy, , and the heating capacity or Specific Absorption Rate, SAR, under alternating magnetic fields.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Energy and Bioproducts Research Institute, Aston University, Birmingham B4 7ET, United Kingdom.
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level.
View Article and Find Full Text PDFArch Microbiol
October 2024
College of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!