Plastic waste is being manufactured for the production of hydrogen. The amount of plastic waste collected annually is 189,953 tonnes from adjacent nations like Indonesia and Malaysia. Polyethylene (PE), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyvinyl chloride (PVC), and Polystyrene (PS) are the five most prevalent forms of plastic found in most waste. Pyrolysis, water gas shift and steam reforming reaction, and pressure swing adsorption are the three main phases utilized and studied. In this research, authors examines the energy consumption on every stage. The plastic waste can be utilized to manufacture many hydrocarbons using the pyrolysis reaction. For this process, fast pyrolysis is being used at a temperature of 500 °C. A neutralization process is also needed due to the presence of Hydrochloric acid from the pyrolysis reaction, with the addition of sodium hydroxide. This is being carried to prevent any damage to the reactor during the process. Secondly, the steam reforming process continues after the water gas shift reaction has produced steam and carbon monoxide, followed by carbon dioxide and hydrogen formation. Lastly, pressure swing adsorption is designed to extract HS and CO from the water gas shift and steam reforming reaction for greater purity of hydrogen. From the simulation study, it is observed that using various types of plastic waste procured (total input of 20,000 kg per hour of plastics) from, Brunei Darussalam, Malaysia and Indonesia, can produce about 340,000 tons of Hydrogen per year. Additionally, the annual profit of the Hydrogen production is estimated to be between $ 271,158,100 and $ 358,480,200. As per the economic analysis, it can be said that its a good to start hydrogen production plant in these regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901799PMC
http://dx.doi.org/10.1038/s41598-024-55079-5DOI Listing

Publication Analysis

Top Keywords

plastic waste
20
water gas
12
gas shift
12
steam reforming
12
production hydrogen
8
shift steam
8
reforming reaction
8
pressure swing
8
swing adsorption
8
pyrolysis reaction
8

Similar Publications

Objectives: Plastics in the environment have moved from an "eye-sore" to a public health threat. Hospitals are one of the biggest users of single-use plastics, and there is growing literature looking at not only plastics in the environment but health care's overall contribution to its growth.

Methods: This study was a retrospective review at a 411-bed level II trauma hospital over 47 months pre and post the last wave of COVID-19 affecting this hospital.

View Article and Find Full Text PDF

The microplastic menace: a critical review of its impact on marine photoautotrophs and their environment.

Environ Sci Pollut Res Int

January 2025

Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002.

Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment.

View Article and Find Full Text PDF

The ubiquitous presence of plastic waste presents a significant environmental challenge, characterized by its persistence and detrimental impacts on ecosystems. The valorization of plastic waste through conversion into high-value carbon materials offers a promising circular economy approach. This review critically examines the potential of plastic waste-derived activated carbon (PAC) as a sustainable and effective adsorbent for water remediation.

View Article and Find Full Text PDF

Enhancing biodegradation of polyolefins and real mixed plastic waste by combination of pretreatment and mixed microbial consortia.

Chemosphere

January 2025

Section of Bioresources and Process Engineering, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark. Electronic address:

Polyolefins (PO) are the most common consumer plastics, constituting about half of plastic waste. This work investigated the process combining physicochemical pretreatment and PO-enriched mixed microbial consortia (MMCs) on biodegrading European real mixed plastic waste. The MMCs, acclimatized on PO powders, were enriched with strains that could use PO, primarily dominated by the genus Rhodanobacter.

View Article and Find Full Text PDF

Enzymes offer a promising avenue for enhancing the competitiveness of biodegradable plastics in environmental restoration and the circular economy.

Waste Manag

January 2025

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China.

As a promising alternative to traditional plastics, the widespread application of biodegradable plastic (BP) will help solve worsening environmental problems. Enzymes such as cutinase, lipase, protease and esterase produced by bacteria and fungi in the environment play a crucial role in the degradation, recycling and valorization of BP by degrading them into low-molecular-weight oligomers or small monomers. These enzymes offering advantages such as high efficiency, cleanliness, safety and environmental friendliness, making them more competitive in environmental restoration and circular economy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!