Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901804PMC
http://dx.doi.org/10.1038/s41467-024-46234-7DOI Listing

Publication Analysis

Top Keywords

kv3 signaling
8
dendritic computation
8
starburst amacrine
8
amacrine cells
8
local synaptic
8
synaptic inputs
8
inputs global
8
calcium transients
8
dendritic
6
dendritic mglur2
4

Similar Publications

Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.

View Article and Find Full Text PDF

The primate prefrontal cortex (PFC) is a quintessential hub of cognitive functions. Amidst its intricate neural architecture, the interplay of distinct neuronal subtypes, notably parvalbumin (PV) and somatostatin (SST) interneurons (INs), emerge as a cornerstone in sculpting cortical circuitry and governing cognitive processes. While considerable strides have been made in elucidating the developmental trajectory of these neurons in rodent models, our understanding of their postmigration developmental dynamics in primates still needs to be studied.

View Article and Find Full Text PDF
Article Synopsis
  • - Voltage-gated ion channels are crucial for maintaining membrane potential and regulating electrical signals in neurons, with voltage-gated potassium channels (K) being particularly important for neuronal excitability.
  • - High levels of reactive oxygen species (ROS) in the aging brain can impact K channels, contributing to aging and neurodegeneration, especially in conditions like Alzheimer's, Parkinson's, and Huntington's diseases.
  • - The review highlights specific K channels affected in these disorders (K1, K2.1, K3, K4, K7) and suggests that modulators of these channels may serve as potential therapeutic targets to prevent or treat neurodegenerative diseases.
View Article and Find Full Text PDF

Characteristics of A-type voltage-gated K currents expressed on sour-sensing type III taste receptor cells in mice.

Cell Tissue Res

June 2024

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.

Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K currents in taste buds remain unclear.

View Article and Find Full Text PDF

Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!