Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901804 | PMC |
http://dx.doi.org/10.1038/s41467-024-46234-7 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107.
Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.
View Article and Find Full Text PDFbioRxiv
July 2024
Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, 20892, USA.
The primate prefrontal cortex (PFC) is a quintessential hub of cognitive functions. Amidst its intricate neural architecture, the interplay of distinct neuronal subtypes, notably parvalbumin (PV) and somatostatin (SST) interneurons (INs), emerge as a cornerstone in sculpting cortical circuitry and governing cognitive processes. While considerable strides have been made in elucidating the developmental trajectory of these neurons in rodent models, our understanding of their postmigration developmental dynamics in primates still needs to be studied.
View Article and Find Full Text PDFFront Cell Neurosci
May 2024
Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain.
Cell Tissue Res
June 2024
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K currents in taste buds remain unclear.
View Article and Find Full Text PDFNat Commun
February 2024
Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!