Cocrystallization improves the tabletability of ligustrazine despite a reduction in plasticity.

Int J Pharm

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States. Electronic address:

Published: April 2024

AI Article Synopsis

  • Cocrystallization is a method that modifies the mechanical properties of crystals, which affects their performance in tablet form.
  • Cocrystals formed from ligustrazine (LIG) with malonic acid (MA) and salicylic acid (SA) were studied to analyze how changing the crystal structure influences tabletability.
  • The findings revealed that while LIG had high plasticity but suffered from overcompression, the LIG-SA cocrystal had improved tabletability due to its stronger bonding, challenging the notion that plasticity alone determines tabletability.

Article Abstract

Cocrystallization is an effective method for altering the tableting performance of crystals by modifying their mechanical properties. In this study, cocrystals of ligustrazine (LIG) with malonic acid (MA) and salicylic acid (SA) were investigated to better understand how modifying crystal structure can affect tableting properties. LIG suffered from overcompression at high pressures despite its high plasticity. Both LIG-MA and LIG-SA displayed lower plasticity than LIG, which was confirmed by both an in-die Heckel and energy framework analyses. The LIG-MA cocrystal displayed slightly worse tabletability than LIG, as expected from its lower plasticity. However, LIG-SA surprisingly showed improved tabletability despite its lower plasticity. This was explained by the higher bonding strength of LIG-SA compared with LIG. This work not only provided new examples of tabletability modulation through crystal engineering but also highlighted the risk of failed tabletability predictions based on plasticity alone. Instead, more reliable tabletability predictions of different crystal forms must consider the bonding area - bonding strength interplay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.123939DOI Listing

Publication Analysis

Top Keywords

lower plasticity
12
bonding strength
8
tabletability predictions
8
tabletability
6
plasticity
6
lig
5
cocrystallization improves
4
improves tabletability
4
tabletability ligustrazine
4
ligustrazine despite
4

Similar Publications

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Morphological change in an isolated population of red squirrels () in Britain.

R Soc Open Sci

January 2025

Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.

The mechanical properties of dietary items are known to influence skull morphology, either through evolution or by phenotypic plasticity. Here, we investigated the impact of supplementary feeding of peanuts on the morphology of red squirrels () from five populations in Britain (North Scotland, Borders, Jersey and two temporally distinct populations from Formby (Merseyside)). Stable isotope analysis confirmed dietary ecology in 58 specimens.

View Article and Find Full Text PDF

Rhinoplasty is one of the major surgical procedures most popular and it is generally performed modelling the internal bones and cartilage using a closed approach to reduce the damage of soft tissue, whose final shape is determined by means of their new settlement over the internal remodelled rigid structures. An optimal planning, achievable thanks to advanced acquisition of 3D images and thanks to the virtual simulation of the intervention via specific software. Anyway, the final result depends also on factors that cannot be totally predicted regarding the settlement of soft tissues on the rigid structures, and a final objective check would be useful to eventually perform some adjustments before to conclude the intervention.

View Article and Find Full Text PDF

Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability.

Heliyon

January 2025

Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.

This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.

View Article and Find Full Text PDF

Objective: The surgical team in this study examined the efficacy of a modified reverse sural neurocutaneous flap repair in treating soft tissue defects of the ankle and foot caused by accidents.

Methods: This study enrolled 89 patients treated for soft tissue defects of the ankle or foot between January 2007 and December 2023. The patients were divided into two groups: 44 patients underwent a modified reverse sural neurocutaneous flap repair, while 45 received traditional treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!