Mobile monitoring campaigns have effectively captured spatial hyperlocal variations in long-term average concentrations of regulated and unregulated air pollutants. However, their application in estimating spatiotemporally varying maps has rarely been investigated. Tackling this gap, we investigated whether mobile measurements can assess long-term average nitrogen dioxide (NO) concentrations for each hour of the day. Using mobile NO data monitored for 10 months in Amsterdam, we examined the performance of two spatiotemporal land use regression (LUR) methods, Spatiotemporal-Kriging and GTWR (Geographical and Temporal Weighted Regression), alongside two classical spatial LUR models developed separately for each hour. We found that mobile measurements follow the general pattern of fixed-site measurements, but with considerable deviations (indicating collection uncertainty). Leveraging heterogeneous spatiotemporal autocorrelations, GTWR smoothed these deviations and achieved an overall performance of an R of 0.49 and a Mean Absolute Error of 6.33 μg/m, validated by long-term fixed-site measurements (out-of-sample). The other models tested were more affected by the collection uncertainty. We highlighted that the spatiotemporal variations captured in mobile measurements can be used to reconstruct long-term average hourly air pollution maps. These maps facilitate dynamic exposure assessments considering spatiotemporal human activity patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171251DOI Listing

Publication Analysis

Top Keywords

long-term average
16
mobile measurements
12
average hourly
8
mobile monitoring
8
fixed-site measurements
8
collection uncertainty
8
mobile
6
long-term
5
measurements
5
lur modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!