A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation of carbofuran and acetamiprid in wolfberry by dielectric barrier discharge plasma: Kinetics, pathways, toxicity and molecular dynamics simulation. | LitMetric

Degradation of carbofuran and acetamiprid in wolfberry by dielectric barrier discharge plasma: Kinetics, pathways, toxicity and molecular dynamics simulation.

Chemosphere

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China. Electronic address:

Published: April 2024

Carbofuran and acetamiprid pose the highest residual risk among pesticides found in wolfberries. This study aimed to degrade these pesticides in wolfberries using a multi-array dielectric barrier discharge plasma (DBD), evaluate the impact on safety and quality and explore their degradation mechanism. The results showed that DBD treatment achieved 90.6% and 80.9% degradation rates for carbofuran and acetamiprid, respectively, following a first-order kinetic reaction. The 120 s treatment successfully reduced pesticide contamination to levels below maximum residue limits. Treatment up to 180 s did not adversely affect the quality of wolfberries. QTOF/MS identification and degradation pathway analysis revealed that DBD broke down the furan ring and carbamate group of carbofuran, while replacing the chlorine atom and oxidizing the side chain of acetamiprid, leading to degradation. The toxicological evaluation showed that the degradation products were less toxic than undegraded pesticides. Molecular dynamics simulations revealed the reactive oxygen species (ROS) facilitated the degradation of pesticides through dehydrogenation and radical addition reactions. ROS type and dosage significantly affected the breakage of chemical bonds associated with toxicity (C-O and C-Cl). These findings deepen insights into the plasma chemical degradation of pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141561DOI Listing

Publication Analysis

Top Keywords

carbofuran acetamiprid
12
degradation
8
dielectric barrier
8
barrier discharge
8
discharge plasma
8
molecular dynamics
8
pesticides wolfberries
8
degradation pesticides
8
pesticides
5
degradation carbofuran
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!