AI Article Synopsis

  • * Researchers analyzed cancerous lung tissue and corresponding non-cancerous tissue, along with saliva and plasma samples from lung cancer patients and healthy controls, finding several metabolites that differed significantly between groups.
  • * A specific model using 12 unique salivary metabolites showed promise in distinguishing lung cancer patients from controls, with a notable discriminative ability of one metabolite, N-acetylspermidine, which may enhance non-invasive screening methods for the disease.

Article Abstract

Identifying novel biomarkers for early detection of lung cancer is crucial. Non-invasively available saliva is an ideal biofluid for biomarker exploration; however, the rationale underlying biomarker detection from organs distal to the oral cavity in saliva requires clarification. Therefore, we analyzed metabolomic profiles of cancer tissues compared with those of adjacent non-cancerous tissues, as well as plasma and saliva samples collected from patients with lung cancer (n = 109 pairs). Additionally, we analyzed plasma and saliva samples collected from control participants (n = 83 and 71, respectively). Capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry were performed to comprehensively quantify hydrophilic metabolites. Paired tissues were compared, revealing 53 significantly different metabolites. Plasma and saliva showed 44 and 40 significantly different metabolites, respectively, between patients and controls. Of these, 12 metabolites exhibited significant differences in all three comparisons and primarily belonged to the polyamine and amino acid pathways; N-acetylspermidine exhibited the highest discrimination ability. A combination of 12 salivary metabolites was evaluated using a machine learning method to differentiate patients with lung cancer from controls. Salivary data were randomly split into training and validation datasets. Areas under the receiver operating characteristic curve were 0.744 for cross-validation using training data and 0.792 for validation data. This model exhibited a higher discrimination ability for N-acetylspermidine than that for other metabolites. The probability of lung cancer calculated using this model was independent of most patient characteristics. These results suggest that consistently different salivary biomarkers in both plasma and lung tissues might facilitate non-invasive lung cancer screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093188PMC
http://dx.doi.org/10.1111/cas.16112DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
plasma saliva
12
non-invasive lung
8
tissues compared
8
saliva samples
8
samples collected
8
patients lung
8
discrimination ability
8
lung
7
cancer
7

Similar Publications

Background: Results of the National Lung Screening Trial create the potential to reduce lung cancer mortality, but community translation of lung cancer screening (LCS) has been challenging. Subsequent policies have endorsed informed and shared decision-making and using decision support tools to support person-centered choices about screening to facilitate implementation. This study evaluated the feasibility and acceptability of LuCaS CHOICES, a web-based decision aid to support delivery of accurate information, facilitate communication skill development, and clarify personal preferences regarding LCS-a key component of high-quality LCS implementation.

View Article and Find Full Text PDF

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Cancer statistics, 2025.

CA Cancer J Clin

January 2025

Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA.

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2021) and mortality data collected by the National Center for Health Statistics (through 2022). In 2025, 2,041,910 new cancer cases and 618,120 cancer deaths are projected to occur in the United States. The cancer mortality rate continued to decline through 2022, averting nearly 4.

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Background: Cancer-associated cachexia can inhibit immune checkpoint inhibitor (ICI) therapy efficacy. Cachexia's effect on ICI therapy has not been studied in large cohorts of cancer patients aside from lung cancer. We studied associations between real-world routinely collected clinical cachexia markers and disability-free, hospitalization-free and overall survival of cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!