Many bacteria use operons to coregulate genes, but it remains unclear how operons benefit bacteria. We integrated E. coli's 788 polycistronic operons and 1,231 transcription units into an existing whole-cell model and found inconsistencies between the proposed operon structures and the RNA-seq read counts that the model was parameterized from. We resolved these inconsistencies through iterative, model-guided corrections to both datasets, including the correction of RNA-seq counts of short genes that were misreported as zero by existing alignment algorithms. The resulting model suggested two main modes by which operons benefit bacteria. For 86% of low-expression operons, adding operons increased the co-expression probabilities of their constituent proteins, whereas for 92% of high-expression operons, adding operons resulted in more stable expression ratios between the proteins. These simulations underscored the need for further experimental work on how operons reduce noise and synchronize both the expression timing and the quantity of constituent genes. A record of this paper's transparent peer review process is included in the supplemental information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957310PMC
http://dx.doi.org/10.1016/j.cels.2024.02.002DOI Listing

Publication Analysis

Top Keywords

operons
10
operon structures
8
whole-cell model
8
operons benefit
8
benefit bacteria
8
operons adding
8
adding operons
8
cross-evaluation e coli's
4
e coli's operon
4
structures whole-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!