Surfactant-enhanced in-situ chemical oxidation (S-ISCO) is widely applied in soil and groundwater remediation. However, the role of surfactants in the reactive species (RSs) transformation remains inadequately explored. This work introduced nonionic surfactant Tween-80 (TW-80) into a nano zero-valent iron (nZVI) activated persulfate (PS) system. The findings indicate that PS/nZVI/TW-80 system can realize the concurrent removal of trichloroethylene (TCE), tetrachloroethene (PCE), and carbon tetrachloride (CT), whereas CT cannot be eliminated without TW-80 presence. Further analysis unveiled that hydroxyl (HO•) and sulfate radicals (SO•) were the primary species for TCE and PCE degradation, while CT was reductively eliminated by surfactant radicals generated from TW-80. Moreover, the surfactant radicals were found to accelerate Fe(III)/Fe(II) cycle, reduce the production of iron sludge, and increase PS decomposition. The possible degradation routes of mixed chlorinated hydrocarbons (CHCs) and the decomposition pathways of TW-80 were proposed through the density function theory (DFT) calculation and intermediates analysis. Additionally, the effects of other nonionic surfactants on the simultaneous removal of TCE, PCE, and CT, and the practical applications using the actual contaminated groundwater were also evaluated. This study provides theoretical support for the simultaneous removal of CHCs, particularly those containing perchlorinated contaminants, using the S-ISCO techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133887 | DOI Listing |
Polymers (Basel)
December 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.
View Article and Find Full Text PDFLangmuir
January 2025
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States. Electronic address:
Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Chemical Engineering, University of Western Macedonia, GR-50132, Kozani, Greece. Electronic address:
The escalating challenge of eliminating persistent micropollutants from aquatic environments acted as a driving force for the development of innovative Advanced Oxidation Processes (AOPs). Among various AOPs, Light-Activated Persulfate (LAP) stands out for its efficacy due to its homogeneous nature and the potential for coupling with renewable sources, leading to enhanced sustainability. From this perspective, this review summarizes the research on LAP for the degradation of micropollutants over the previous six years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!