The recent discovery of copper-substituted lead phosphate apatite, also known as LK-99, has caught much attention owing to certain experimental evidence of room-temperature superconductivity, although this claim is currently under intensive debate. Be it superconducting or not, we show that the normal state of this material has peculiar quantum geometrical properties that may be related to the magnetism and the mechanism for flat band superconductivity. Based on a recently proposed spinless two-band tight-binding model for the Pb-Cu hexagonal lattice subset of the crystalline structure, which qualitatively captures the two flat bands in the band structure, we elaborate the highly anisotropic Berry curvature and quantum metric in the regions of Brillouin zone where one flat band is above and the other below the Fermi surface. In these regions, the Berry curvature has a pattern in the planar momentum that remains unchanged along the out-of-plane momentum. Moreover, the net orbital magnetization contributed from the Berry curvature is zero, signifying that the magnetism in this material should come from other sources. The quantum metric has a similar momentum dependence, and its two planar components are found to be roughly the same but the out-of-plane component vanishes, hinting that the superfluid stiffness of the flat band superconductivity, shall it occur, may be quite anisotropic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad2e22 | DOI Listing |
Phys Chem Chem Phys
January 2025
College of Sciences, Northeastern University, Shenyang, 110819, China.
In this work, using first-principles calculations, we predict a promising class of two-dimensional ferromagnetic semiconductors, namely Janus PrXY (X ≠ Y = Cl, Br, I) monolayers. Through first-principles calculations, we found that PrXY monolayers have excellent dynamic and thermal stability, and their band structures, influenced by magnetic exchange and spin-orbital coupling, exhibit significant valley polarization. Between and - valleys, the Berry curvature values are opposite to each other, resulting in the anomalous valley Hall effect.
View Article and Find Full Text PDFUsing the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.
View Article and Find Full Text PDFNano Lett
January 2025
Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, People's Republic of China.
Band sorting is critical to obtaining physical properties from eigenvalues and eigenvectors that constitute the band diagram. We propose a band sorting method based on the global continuity and smoothness of the eigenvalues on the parameter space. Several strategies based on the connection between neighbor eigenvalues and how to sweep the parameter space are introduced to recognize level crossing degeneracies and level repulsion degeneracies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!