Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132879 | PMC |
http://dx.doi.org/10.1093/plcell/koae063 | DOI Listing |
Microorganisms
December 2024
Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia.
Phosphorus is a key nutrient for all organisms. The study of phosphate metabolism and its regulation is important for understanding the evolutionary processes of regulatory systems in eukaryotic cells. The methylotrophic yeast is an efficient producer organism, and it is actively used in biotechnological production.
View Article and Find Full Text PDFCell
January 2025
New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China. Electronic address:
Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4).
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).
View Article and Find Full Text PDFPlant Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:
Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!