Glycosyltransferases (GTs), crucial enzymes in plants, alter natural substances through glycosylation, a process with extensive applications in pharmaceuticals, food, and cosmetics. This study narrows its focus to GT family 1, specifically UDP-glycosyltransferases (UGTs), which are known for glycosylating small phenolic compounds, especially hydroxybenzoates. We delve into the workings of Raphanus sativus glucosyltransferase (Rs89B1), a homolog of Arabidopsis thaliana UGT89B1, and its mutant to explore their glycosyltransferase activities toward hydroxybenzoates. Our findings reveal that Rs89B1 glycosylates primarily the para-position of mono-, di-, trihydroxy benzoic acids, and its substrate affinity is swayed by the presence and position of the hydroxyl group on the benzene ring of hydroxybenzoate. Moreover, mutations in the loop region of Rs89B1 impact both substrate affinity and catalytic activity. The study demonstrates that insertional/deletional mutations in non-conserved regions, which are distant from the UGT's recognition site, can have an effect on the UGT's substrate recognition site, which in turn affects acceptor substrate selectivity and glycosyltransferase activity. This research uncovers new insights suggesting that mutations in the loop region could potentially fine-tune enzyme properties and enhance its catalytic activity. These findings not only have significant implications for enzyme engineering in biotechnological applications but also contribute to a more profound understanding of this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901349PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299755PLOS

Publication Analysis

Top Keywords

catalytic activity
12
loop region
12
substrate affinity
8
mutations loop
8
recognition site
8
enzymatic properties
4
properties udp-glycosyltransferase
4
udp-glycosyltransferase 89b1
4
89b1 radish
4
radish modulation
4

Similar Publications

Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.

Angew Chem Int Ed Engl

December 2024

University of Wisconsin-Madison, Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, UNITED STATES OF AMERICA.

In this study, we employed EC-MS to elucidate the role of halide anions in electrochemical CO2 and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2 production decreased in the order KF > KCl > KI, meaning that I- most strongly suppressed HER.

View Article and Find Full Text PDF

Synthesis of Imine-Phenoxy Ligated Palladium Complexes for Norbornene Homopolymerization.

Inorg Chem

December 2024

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Metal complexes with tunable ligands play a crucial role in olefin polymerization and impart control over molecular weight, crystallinity, and stereoregularity. We report the single-step synthesis of imine-phenoxy ligands in excellent yields (81-93%). The identity of electronically tuned imine-phenoxy ligands was unambiguously ascertained by using a combination of spectroscopic and analytical methods.

View Article and Find Full Text PDF

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.

View Article and Find Full Text PDF

MOF-Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables.

Small

December 2024

School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China.

Green and efficient total antioxidant capacity (TAC) detection is significant for healthy diet and disease prevention. This work first proposed the concept of TAC colorimetric detection based on microrobots. A novel metal-organic framework (MOF)-based biomimetic enzyme microrobot (MIL-88A@FeO) is developed that can efficiently and accurately detect the TAC of real fruits and vegetables.

View Article and Find Full Text PDF

Nanozymes and Their Potential Roles in the Origin of Life.

Adv Mater

December 2024

Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!