Background: Meningioma is the most common primary intracranial tumor with a high frequency of postoperative recurrence, yet the biology of the meningioma malignancy process is still obscure.
Methods: To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high-grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at the animal model and cellular levels.
Results: Comprehensive analysis and validation in mice and clinical cohorts indicated clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type 1 interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type 1 interferon pathway. Meanwhile, both intra- and extracellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoting tumor killing and phagocytosis.
Conclusions: CLU might be a key brake of meningioma malignance by synchronously modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226886 | PMC |
http://dx.doi.org/10.1093/neuonc/noae034 | DOI Listing |
BMC Cancer
December 2024
ISTCT UMR 6030-CNRS, Université de Caen-Normandie, Caen, 14000, France.
Background: Proton therapy (PRT) is an innovative radiotherapeutic modality for the treatment of cancer with unique ballistic properties. The depth-dose distribution of a proton beam reduces exposure of healthy tissues to radiations, compared with photon-therapy (XRT). To date, only few indications for proton-therapy, like pediatric cancers, chordomas, or intra-ocular neoplasms, are reimbursed by Health systems.
View Article and Find Full Text PDFPituitary
December 2024
Department of Endocrinology and Nutrition, Hospital Universitario de Puerta de Hierro Majadahonda, Madrid, Spain.
Purpose: Studies focused on the effects of sellar and/or perisellar (S/PS) meningiomas on pituitary function are scarce. The primary objective of the present study was to determinate the effects that S/PS meningiomas and their treatments have on pituitary function. Also, we described the clinical characteristics and therapeutic outcomes of the cohort of adult Spanish patients.
View Article and Find Full Text PDFActa Neurochir (Wien)
December 2024
Medical Faculty of Heidelberg University, Heidelberg, Germany.
Introduction: Tumorous growths in the sellar region pose significant clinical challenges due to their proximity to critical visual structures such as the optic chiasm and optic nerves. Given their proximity to the optic system, these tumors are often diagnosed due to a progressive decrease in visual acuity. Thus, surgical intervention is crucial to prevent irreversible damage, as timely decompression can halt the progression of edema and subsequent optic atrophy.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Department of Oncopathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India.
Objective: Meningiomas are a molecularly ill-defined heterogeneous group of indolent intracranial tumors. Though, WHO grade 1 tumors are histologically benign, sometimes they transform into malignant and may be recurrent which remains always challenging to clinicians. Therefore, the current study sought to discover the clinical relevance of CD44 in meningioma patients.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Purpose: Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors.
Methods: A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!