This article tackles secondary voltage recovery problem in islanded microgrids with the aim of reducing communication frequency among distributed generation (DG) units, while maintaining desired performance and saving communication network workload. To pursue this objective, a distributed proportional-integral-derivative controller is first introduced, whose sampled-data implementation is enabled by leveraging the finite-difference approximation for the derivative action, which leads to a distributed proportional-integral-retarded (PIR) controller with a small enough sampling period . Then, the resulting fully distributed PIR control law is combined with a dynamic event-triggered mechanism (DETM), which embeds Zeno-freeness property and avoids the requirement of continuous transmission in triggering process. Thus, the communication burden is significantly mitigated and the waste of communication resources is avoided. By exploiting Lyapunov-Krasovkii method, we derive exponential stability conditions expressed as linear matrix inequalities (LMIs), whose solution allows evaluating the maximum sampling period and DETM parameters preserving the stability of the microgrid. A thorough numerical analysis, carried out on the standard IEEE 14-bus test system, confirms the theoretical derivation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3364820DOI Listing

Publication Analysis

Top Keywords

dynamic event-triggered
8
voltage recovery
8
islanded microgrids
8
sampling period
8
distributed
5
distributed dynamic
4
event-triggered control
4
control voltage
4
recovery islanded
4
microgrids artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!