The brain continually reorganizes its functional network to adapt to post-stroke functional impairments. Previous studies using static modularity analysis have presented global-level behavior patterns of this network reorganization. However, it is far from understood how the brain reconfigures its functional network dynamically following a stroke. This study collected resting-state functional MRI data from 15 stroke patients, with mild (n = 6) and severe (n = 9) two subgroups based on their clinical symptoms. Additionally, 15 age-matched healthy subjects were considered as controls. By applying a multilayer temporal network method, a dynamic modular structure was recognized based on a time-resolved function network. The dynamic network measurements (recruitment, integration, and flexibility) were calculated to characterize the dynamic reconfiguration of post-stroke brain functional networks, hence, revealing the neural functional rebuilding process. It was found from this investigation that severe patients tended to have reduced recruitment and increased between-network integration, while mild patients exhibited low network flexibility and less network integration. It's also noted that previous studies using static methods could not reveal this severity-dependent alteration in network interaction. Clinically, the obtained knowledge of the diverse patterns of dynamic adjustment in brain functional networks observed from the brain neuronal images could help understand the underlying mechanism of the motor, speech, and cognitive functional impairments caused by stroke attacks. The present method not only could be used to evaluate patients' current brain status but also has the potential to provide insights into prognosis analysis and prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3371097 | DOI Listing |
Brain Struct Funct
December 2024
School of Medicine, Department of Neuropharmacology, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
This editorial celebrates the 80th birthday of Distinguished Professor Laszlo Zaborszky, co-founder of Brain Structure and Function, and reflects on his monumental contributions to neuroscience, particularly his pioneering work on the cholinergic basal forebrain. Professor Zaborszky's research has reshaped our understanding of this brain region's organization and function, uncovering its critical role in cognitive processes such as learning, memory, and attention. His findings have challenged longstanding assumptions, demonstrating that the cholinergic projections to the cortex are highly organized, with implications for neurodegenerative diseases like Alzheimer's.
View Article and Find Full Text PDFBehav Res Methods
December 2024
Department of Education Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.
The absence of explicit word boundaries is a distinctive characteristic of Chinese script, setting it apart from most alphabetic scripts, leading to word boundary disagreement among readers. Previous studies have examined how this feature may influence reading performance. However, further investigations are required to generate more ecologically valid and generalizable findings.
View Article and Find Full Text PDFTransl Stroke Res
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
December 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) gene polymorphism (rs638405) has been widely reported to be associated with Alzheimer's disease (AD) risk. However, studies on the relationship between BACE1 gene polymorphism (rs638405), brain volume, and cognition in AD patients remain scarce. To investigate the effect of genetic polymorphism in BACE1 on gray matter volume (GMV) and cognition in AD, this study recruited 111 cognitively unimpaired (CU) controls and 144 AD patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!