Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, E-E energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski's rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ - 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-04865-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!