Nature-based solutions, such as shellfish reefs, can support natural coastal defence and be a potential solution for climate-resilient shorelines in the future. In the Belgian Part of the North Sea, the "Coastbusters" projects aim to develop nature-based coastal protection by favouring subtidal mussel bed establishment on the seafloor through typical longline aquaculture techniques. Mussel beds are dependent on environmental conditions, and both influence the physical and biogeochemical features in a soft-sediment environment. Therefore, a comprehensive ecological monitoring program is essential to assess the success of future mussel bed development and its influence on the surrounding ecosystem. For establishing a monitoring baseline of the two experimental areas, a combination of conventional benthic assessment methods (grab sampling and granulometry) and non-invasive techniques (sediment profile imaging and transect diving video surveys) were utilised. Although mussel reefs did not yet develop by the time of this study, clear differences in ecological and sedimentological characteristics were found between two experimental areas (sheltered and exposed), subjected to slightly different hydrodynamic conditions. The one sheltered by coastal sandbanks was dominated by fine-muddy sand, higher species richness, biomass, and higher biological activity (burrows, fauna, and biological beds) as observed by all methods in one or another way. Moreover, functional diversity indices revealed a higher partitioning of the total available resources, suggesting more complex ecological processes in the sheltered area. Conversely, the area more exposed to the open sea was dominated by more sandy sediments, and fewer organisms were found. The combination of those different monitoring tools provides an integrated, complementary view, from different perspectives, on the biological, physical and functional characteristics of the study areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901964PMC
http://dx.doi.org/10.1007/s10661-024-12480-xDOI Listing

Publication Analysis

Top Keywords

nature-based solutions
8
coastal protection
8
sheltered exposed
8
monitoring program
8
mussel bed
8
experimental areas
8
coastal
5
solutions coastal
4
sheltered
4
protection sheltered
4

Similar Publications

Assessing the potential effects of climate change on the morphodynamics of the tropical coral reef islands in the Gulf of Mannar, Indian Ocean.

J Environ Manage

January 2025

Physical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403 004, Goa, India; School of Oceanography, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Low-lying and small tropical coral reef islands around the world are extremely vulnerable to the effects of global environmental change caused by the combination of anthropogenic climate change and escalating extreme hydrodynamic events. Erosion and inundation are anticipated to physically destabilize the tropical coral reef islands, rendering them uninhabitable within the next century. Therefore, it is crucial to assess the repercussions of these hazardous events on the delicate reef island ecosystem in order to conserve and ensure sustainable management.

View Article and Find Full Text PDF

Ex situ living plant collections play a crucial role in providing nature-based solutions to twenty-first century global challenges. However, the complex dynamics of these artificial ecosystems are poorly quantified and understood, affecting biodiversity storage, conservation and utilization. To evaluate the management of ex situ plant diversity, we analysed a century of data comprising 2.

View Article and Find Full Text PDF

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place.

View Article and Find Full Text PDF

Towards stormwater reuse risk management plans: Methodology and catchment scale evaluation of QMRA.

Sci Total Environ

January 2025

Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.

The reuse of stormwater represents a potential option for meeting water demands in water stressed regions as well as preventing and mitigating diffuse pollution of receiving water bodies. Particularly, the elaboration of a risk management plan for stormwater reuse may help to understand associated environmental and public health risks and design fit-for-purpose water treatment processes. In this work, it is presented an innovative methodology to perform quantitative microbial risk assessment (QMRA) for stormwater reuse by using data simulated by SWMM software.

View Article and Find Full Text PDF

Nature-based Solutions (NbS) have emerged as a sustainable approach to managing flood risks by enhancing natural water retention and reducing surface runoff in urban areas. As climate change and rapid urbanization exacerbate flood hazards, optimizing the spatial deployment of NbS is crucial for improving urban resilience and mitigating flood impacts. This study presents a comprehensive optimization framework for the spatial allocation of fourteen different NbS types aimed at mitigating urban flood risks in Gdańsk, Poland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!