The Biocatalytic Potential of Aromatic Ammonia-Lyase from Loktanella atrilutea.

Chembiochem

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania.

Published: May 2024

Characterization of the aromatic ammonia-lyase from Loktanella atrilutea (LaAAL) revealed reduced activity towards canonical AAL substrates: l-Phe, l-Tyr, and l-His, contrasted by its pronounced efficiency towards 3,4-dimethoxy-l-phenylalanine. Assessing the optimal conditions, LaAAL exhibited maximal activity at pH 9.5 in the ammonia elimination reaction route, distinct from the typical pH ranges of most PALs and TALs. Within the exploration of the ammonia source for the opposite, synthetically valuable ammonia addition reaction, the stability of LaAAL exhibited a positive correlation with the ammonia concentration, with the highest stability in 4 M ammonium carbamate of unadjusted pH of ~9.5. While the enzyme activity increased with rising temperatures yet, the highest operational stability and highest stationary conversions of LaAAL were observed at 30 °C. The substrate scope analysis highlighted the catalytic adaptability of LaAAL in the hydroamination of diverse cinnamic acids, especially of meta-substituted and di-/multi-substituted analogues, with structural modelling exposing steric clashes between the substrates' ortho-substituents and catalytic site residues. LaAAL showed a predilection for ammonia elimination, while classifying as a tyrosine ammonia-lyase (TAL) among the natural AAL classes. However, its distinctive attributes, such as genomic context, unique substrate specificity and catalytic fingerprint, suggest a potential natural role beyond those of known AAL classes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400011DOI Listing

Publication Analysis

Top Keywords

aromatic ammonia-lyase
8
ammonia-lyase loktanella
8
loktanella atrilutea
8
laaal exhibited
8
ammonia elimination
8
aal classes
8
laaal
6
ammonia
5
biocatalytic potential
4
potential aromatic
4

Similar Publications

Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in petunia and identification of the putative candidate member involved in floral volatile benzenoids/phenylpropanoids metabolism.

Gene

February 2025

Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China. Electronic address:

The basic helix-loop-helix (bHLH) family, a prominent group of transcription factors, is involved in plant growth, development, and secondary metabolic processes. Petunia (Petunia hybrida), a beloved and widely cultivated garden flower, boasts a diverse array of varieties, some of which exude a captivating fragrance that has garnered immense popularity. The aromatic allure of petunias primarily stems from the presence of volatile benzenoids/phenylpropanoids, the principal floral scent compounds.

View Article and Find Full Text PDF
Article Synopsis
  • A study examined the effects of iron oxide (FeO) nanoparticles at different concentrations on the plant's growth and phytochemical properties, finding that certain FeO NP doses significantly enhanced leaf growth, chlorophyll levels, and essential oil yield.
  • The results suggest that FeO NPs can effectively boost biomass and valuable metabolites, positioning them as beneficial for increasing both agricultural productivity and the health benefits of the plant.
View Article and Find Full Text PDF

Tyrosine phenol lyase (TPL) synthesises L-tyrosine derivatives from monophenols, pyruvate and ammonia. Production of such high-value aromatic chemicals from biomass-derived raw materials is of great interest. In this study, six monophenols (guaiacol, phenol, o-cresol, m-cresol, catechol and syringol) were chosen based on the structure of lignin and were studied as substrates in the enzymatic reaction.

View Article and Find Full Text PDF

Bifunctional Phenylalanine/Tyrosine Ammonia-Lyase (PTAL) Enhances Lignin Biosynthesis: Implications in Carbon Fixation in Plants by Genetic Engineering.

Biology (Basel)

September 2024

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Songhu Road 2005, Shanghai 200438, China.

Lignin is a key metabolite for terrestrial plants. Two types of aromatic amino acids, phenylalanine (Phe) and tyrosine (Tyr), serve as the precursors for lignin biosynthesis. In most plant species, Phe is deaminated by Phe ammonia-lyase (PAL) to initiate lignin biosynthesis, but in grass species, Phe and Tyr are deaminated by Phe/Tyr ammonia-lyase (PTAL).

View Article and Find Full Text PDF

Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases.

Nat Commun

September 2024

Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.

β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds. However, their chemical or enzymatic synthesis is challenging due to the presence of two stereocenters. We design phenylalanine ammonia lyases (PAL) variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!