Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19620DOI Listing

Publication Analysis

Top Keywords

transcriptomic analyses
12
transcription factor
12
syntrichia ruralis
8
emerging model
8
model moss
8
myb transcription
8
ruralis emerging
4
moss genome
4
genome reveals
4
reveals conserved
4

Similar Publications

The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.

View Article and Find Full Text PDF

A dihydrochalcone-specific O-methyltransferase from leaf buds of Populus trichocarpa implicated in bud resin formation.

J Exp Bot

January 2025

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.

Production of secreted leaf bud resin is a mechanism for temperate trees to protect dormant leaf buds against frost damage, dehydration, and insect herbivory. Bud resins contain a wide variety of special metabolites including terpenoids, benzenoids, and phenolics. The leaf bud resins of Populus trichocarpa and P.

View Article and Find Full Text PDF

Pertussis, a severe infectious disease in children, has become increasingly prominent in recent years. This study aims to investigate the role of the MASP1 protein in severe pertussis in children through multi-omics analysis, providing a theoretical basis for the development of novel therapeutic strategies. The study retrieved macro-genome and 16S rRNA data of pediatric pertussis from public databases to analyze microbial diversity and specific flora abundance, conducting pathway functional enrichment analysis.

View Article and Find Full Text PDF

Effects of vitamin B supply on cellular processes of the facultative vitamin B consumer .

Appl Environ Microbiol

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.

Vitamin B (cobalamin, herein B) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B is often scarce, largely because only few prokaryotes can synthesize B and are thus considered B-prototrophs. B-auxotrophy is mostly manifested by the absence of the B-independent methionine synthase, MetE.

View Article and Find Full Text PDF

Background: Cholelithiasis is influenced by various factors, including genetic elements identified in genome-wide association studies (GWAS), but their biological functions are not fully understood.

Methods: Analyzing data from the Finngen database with 37,041 cholelithiasis cases and 330,903 controls, this study combined SNP data from GTEx v8 and linkage disequilibrium data from the 1000 Genomes Project. Using the TWAS FUSION protocol and SMR analysis, it investigated the relationship between gene expression and cholelithiasis, employing colocalization tests and conditional analyses to explore causality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!