Objective: This study evaluates the effectiveness of artificial intelligence (AI) in mammography in a diverse population from a middle-income nation and compares it to traditional methods.
Methods: A retrospective study was conducted on 543 mammograms of 467 Malays, 48 Chinese, and 28 Indians in a middle-income nation. Three breast radiologists interpreted the examinations independently in two reading sessions (with and without AI support). Breast density and BI-RADS categories were assessed, comparing the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) results.
Results: Of 543 mammograms, 69.2% had lesions detected. Biopsies were performed on 25%(n=136), with 66(48.5%) benign and 70(51.5%) malignant. Substantial agreement in density assessment between the radiologist and AI software (κ =0.606, p < 0.001) and the BI-RADS category with and without AI (κ =0.74, p < 0.001). The performance of the AI software was comparable to the traditional methods. The sensitivity, specificity, PPV, and NPV or radiologists alone, radiologist + AI, and AI alone were 81.9%,90.4%,56.0%, and 97.1%; 81.0%, 93.1%,55.5%, and 97.0%; and 90.0%,76.5%,36.2%, and 98.1%, respectively. AI software enhances the accuracy of lesion diagnosis and reduces unnecessary biopsies, particularly for BI-RADS 4 lesions. The AI software results for synthetic were almost similar to the original 2D mammography, with AUC of 0.925 and 0.871, respectively.
Conclusion: AI software may assist in the accurate diagnosis of breast lesions, enhancing the efficiency of breast lesion diagnosis in a mixed population of opportunistic screening and diagnostic patients.
Key Messages: • The use of artificial intelligence (AI) in mammography for population-based breast cancer screening has been validated in high-income nations, with reported improved diagnostic performance. Our study evaluated the usage of an AI tool in an opportunistic screening setting in a multi-ethnic and middle-income nation. • The application of AI in mammography enhances diagnostic accuracy, potentially leading to reduced unnecessary biopsies. • AI integration into the workflow did not disrupt the performance of trained breast radiologists, as there is a substantial inter-reader agreement for BI-RADS category assessment and breast density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115734056280191231207052903 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!