Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Separation of Am and Cm is one of the most challenging yet unavoidable steps in the back end of the nuclear cycle. Various ligands evaluated for Am/Cm separation have their own merits and demerits, and not a single ligand has been uniquely proposed for this purpose. In the present work, we evaluated ,,','-tetra--octyldiglycolamide (TODGA) ,,','-tetra-2-ethylhexyldiglycolamide (T2EHDGA) in combination with a hydrophilic 2,6-bis(1,2,4-triazinyl)pyridine (SOPhBTP) derivative in the aqueous phase for the separation of Am and Cm from nitric acid medium. The results showed that marginal selectivity for Am over Cm was observed with T2EHDGA in the presence of SOPhBTP, which was attributed to the difference in the entropy change for their extraction from both the temperature-dependent liquid-liquid extraction and computational studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt03261b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!