Correlating concerted cations with oxygen redox in rechargeable batteries.

Chem Soc Rev

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

Published: April 2024

Rechargeable batteries currently power much of our world, but with the increased demand for electric vehicles (EVs) capable of traveling hundreds of miles on a single charge, new paradigms are necessary for overcoming the limits of energy density, particularly in rechargeable batteries. The emergence of reversible anionic redox reactions presents a promising direction toward achieving this goal; however this process has both positive and negative effects on battery performance. While it often leads to higher capacity, anionic redox also causes several unfavorable effects such as voltage fade, voltage hysteresis, sluggish kinetics, and oxygen loss. However, the introduction of cations with topological chemistry tendencies has created an efficient pathway for achieving long-term oxygen redox with improved kinetics. The cations serve as pillars in the crystal structure and meanwhile can interact with oxygen in ways that affect the oxygen redox process through their impact on the electronic structure. This review delves into a detailed examination of the fundamental physical and chemical characteristics of oxygen redox and elucidates the crucial role that cations play in this process at the atomic and electronic scales. Furthermore, we present a systematic summary of polycationic systems, with an emphasis on their electrochemical performance, in order to provide perspectives on the development of next-generation cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cs00550jDOI Listing

Publication Analysis

Top Keywords

oxygen redox
16
rechargeable batteries
12
anionic redox
8
oxygen
6
redox
6
correlating concerted
4
cations
4
concerted cations
4
cations oxygen
4
redox rechargeable
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Variation in the diet composition and weight-length relationship of small characids in urbanized and forested streams.

J Fish Biol

January 2025

Laboratório de Biologia Aquática Aplicada, Universidade Federal da Grande Dourados, Dourados, Brazil.

The diet of indicator fish species plays a crucial role in assessing ecosystem health. This study evaluated streams with and without urban influences, focusing on abiotic parameters and the trophic ecology of Psalidodon fasciatus and Piabina argentea. Forested streams exhibited higher redox potential, dissolved oxygen, transparency, and depth, whereas urban streams had higher temperatures, greater widths, and increased levels of total dissolved solids, conductivity, total coliforms, and thermotolerant coliforms.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!