A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A narrative review of deep learning in thyroid imaging: current progress and future prospects. | LitMetric

A narrative review of deep learning in thyroid imaging: current progress and future prospects.

Quant Imaging Med Surg

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China.

Published: February 2024

Background And Objective: Deep learning (DL) has contributed substantially to the evolution of image analysis by unlocking increased data and computational power. These DL algorithms have further facilitated the growing trend of implementing precision medicine, particularly in areas of diagnosis and therapy. Thyroid imaging, as a routine means to screening for thyroid diseases on large-scale populations, is a massive data source for the development of DL models. Thyroid disease is a global health problem and involves structural and functional changes. The objective of this study was to evaluate the general rules and future directions of DL networks in thyroid medical image analysis through a review of original articles published between 2018 and 2023.

Methods: We searched for English-language articles published between April 2018 and September 2023 in the databases of PubMed, Web of Science, and Google Scholar. The keywords used in the search included artificial intelligence or DL, thyroid diseases, and thyroid nodule or thyroid carcinoma.

Key Content And Findings: The computer vision tasks of DL in thyroid imaging included classification, segmentation, and detection. The current applications of DL in clinical workflow were found to mainly include management of thyroid nodules/carcinoma, risk evaluation of thyroid cancer metastasis, and discrimination of functional thyroid diseases.

Conclusions: DL is expected to enhance the quality of thyroid images and provide greater precision in the assessment of thyroid images. Specifically, DL can increase the diagnostic accuracy of thyroid diseases and better inform clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895129PMC
http://dx.doi.org/10.21037/qims-23-908DOI Listing

Publication Analysis

Top Keywords

thyroid
15
thyroid imaging
12
thyroid diseases
12
deep learning
8
image analysis
8
articles published
8
thyroid images
8
narrative review
4
review deep
4
learning thyroid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!