Ubiquitination is a dynamic post-translational modification that regulates virtually all cellular processes by modulating function, localization, interactions and turnover of thousands of substrates. Canonical ubiquitination involves the enzymatic cascade of E1, E2 and E3 enzymes that conjugate ubiquitin to lysine residues giving rise to monomeric ubiquitination and polymeric ubiquitination. Emerging research has established expansion of the ubiquitin code by non-canonical ubiquitination of N-termini and cysteine, serine and threonine residues. Generic methods for identifying ubiquitin substrates using mass spectrometry based proteomics often overlook non-canonical ubiquitinated substrates, suggesting that numerous undiscovered substrates of this modification exist. Moreover, there is a knowledge gap between studies and comprehensive understanding of the functional consequence of non-canonical ubiquitination . Here, we discuss the current knowledge about non-lysine ubiquitination, strategies to map the ubiquitinome and their applicability for studying non-canonical ubiquitination substrates and sites. Furthermore, we elucidate the available chemical biology toolbox and elaborate on missing links required to further unravel this less explored subsection of the ubiquitin system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897730 | PMC |
http://dx.doi.org/10.3389/fmolb.2023.1332872 | DOI Listing |
Cell Death Discov
December 2024
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
The transcription factor GLI1 is the main and final effector of the Hedgehog signaling pathway, which is involved in embryonic development, cell proliferation and stemness. Whether activated through canonical or non-canonical mechanisms, GLI1 aberrant activity is associated with Hedgehog-dependent cancers, including medulloblastoma, as well as other tumoral contexts. Notwithstanding a growing body of evidence, which have highlighted the potential role of post translational modifications of GLI1, the complex mechanisms modulating GLI1 stability and activity have not been fully elucidated.
View Article and Find Full Text PDFCell Oncol (Dordr)
December 2024
Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Purpose: Phosphoglycerate dehydrogenase (PHGDH), a pivotal enzyme in serine synthesis, plays a key role in the malignant progression of tumors through both its metabolic activity and moonlight functions. This study aims to elucidate the non-canonical function of PHGDH in promoting hepatocellular carcinoma (HCC) metastasis through its interaction with methyltransferase-like 3 (METTL3), potentially uncovering a novel therapeutic target.
Methods: Western blot was used to study PHGDH expression changes under anoikis and cellular functional assays were employed to assess its role in HCC metastasis.
Signal Transduct Target Ther
December 2024
School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
Aerobic glycolysis is a hallmark of cancer and is regulated by growth factors, protein kinases and transcription factors. However, it remains poorly understood how these components interact to regulate aerobic glycolysis coordinately. Here, we show that sine oculis homeobox 1 (SIX1) phosphorylation integrates growth factors (e.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China. Electronic address:
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs.
View Article and Find Full Text PDFNature
December 2024
Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
Epigenetic inheritance of silent chromatin domains is fundamental to cellular memory during embryogenesis, but it must overcome the dilution of repressive histone modifications during DNA replication. One such modification, histone H2A lysine 119 monoubiquitination (H2AK119Ub), needs to be re-established by the Polycomb repressive complex 1 (PRC1) E3 ligase to restore the silent Polycomb domain. However, the exact mechanism behind this restoration remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!