(baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of . This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., ) in early and middle-aged yeast, and protein ubiquitination (e.g., ) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897858 | PMC |
http://dx.doi.org/10.15698/mic2024.02.816 | DOI Listing |
J Racial Ethn Health Disparities
January 2025
Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA.
Background: Increased mortality in rural southern areas has persisted and worsened among older Black adults due to high prevalence of chronic conditions combined with limited healthcare access resulting from social and structural factors.
Objective: Our objective was to examine the relationship between general health perceptions, social functioning, mental health, and demographic characteristics among Black adults living in the rural south.
Methods: This cross-sectional study examined health perceptions in older Black Americans residing in four rural towns within Alabama (Clayton, Fort Deposit, Hobson City, and York).
Alzheimers Dement
December 2024
Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: Growth/differentiation factor-15 (GDF15) has been associated with dementia risk, yet its predictive value across cohorts and sub-population, as well as its relationship with endophenotypes relevant to dementia, remains unknown.
Methods: Using the Atherosclerosis Risk in Communities (ARIC) study as the discovery cohort, we examined the relationship between plasma GDF15 levels (SomaScan) and risk for incident all-cause dementia (ACD) in late-life (N=4,287, 7-year follow-up, M=75±5) and in midlife (N=11,595, 20-year follow-up, M=57±6). Utilizing the UK Biobank (UKB; replication cohort), we related plasma GDF15 (Olink) to incident ACD (N=35,673, 14-year follow-up, M=61±5), vascular dementia (VaD) and Alzheimer's disease dementia (AD).
Alzheimers Dement
December 2024
Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Background: The MarkVCID consortium was established to address the paucity of biomarkers for vascular contributions to cognitive impairment and dementia (VCID), a leading cause of dementia. Plasma neurofilament light (NfL), a neuroaxonal injury marker elevated in several neurological and neurodegenerative diseases, was selected as one of the first biomarkers to be examined. We performed comprehensive instrumental and clinical validation of the Quanterix Simoa NfL assay using the first MarkVCID cohort.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
Background: Peak-width of skeletonized mean diffusivity (PSMD) is an emerging biomarker of cerebral small vessel disease (cSVD)-related vascular contributions to cognitive impairment and dementia (VCID). Higher PSMD values reflect greater white matter microstructural damage, and prior research has related PSMD to sporadic and monogenic forms of cSVD and worse cognitive function. Therefore, we proposed PSMD as a risk stratification biomarker for VCID.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Background: Cerebral small vessel disease (cSVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although risk factors for cSVD have been identified, little is known about the biological processes and molecular mediators that influence cSVD development and progression.
Methods: Within the Atherosclerosis Risk in Communities (ARIC) study, we used SomaScan Multiplexed Proteomic technology to relate 4,877 plasma proteins to concurrently measured MRI-defined cSVD characteristics, including WMHs, CMHs, and lacunar infarcts, in late-life (n=1508; mean age: 76).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!