Dental caries is one of the most prevalent and biofilm-associated oral diseases in humans. , with a high ability to form biofilms by adhering to hard surfaces, has been established as an important etiological agent for dental caries. Therefore, it is crucial to find a way to prevent the formation of cariogenic biofilm. Here, we report an electrospun fibrous membrane that could inhibit the adhesion and biofilm formation of . Also, the polystyrene (PS)/polyvinyl pyrrolidone (PVP) electrospun fibrous membrane altered the 3D biofilm architecture and decreased water-insoluble extracellular polysaccharide production. Notably, the anti-adhesion mechanism which laid in Coulomb repulsion between the negatively charged PS/PVP electrospun fibrous membrane and was detected by zeta potential. Furthermore, metagenomics sequencing analysis and CCK-8 assay indicated that PS/PVP electrospun fibrous membrane was microbiome-friendly and displayed no influence on the cell viability of human gingival epithelial cells and human oral keratinocytes. Moreover, an simulation experiment demonstrated that PS/PVP electrospun fibrous membrane could decrease colony-forming unit counts of effectively, and PS/PVP electrospun fibrous membrane carrying calcium fluoride displayed better anti-adhesion ability than that of PS/PVP electrospun fibrous membrane alone. Collectively, this research showed that the PS/PVP electrospun fibrous membrane has potential applications in controlling and preventing dental caries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898674 | PMC |
http://dx.doi.org/10.1093/rb/rbae011 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFPharmaceutics
December 2024
Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China.
: Postoperative abdominal adhesion is a prevalent complication following abdominal surgery, with the incidence of adhesion reaching up to 90%, which may precipitate a range of adverse outcomes. Although fibrous membranes loaded with various anti-inflammatory or other drugs have been proposed for anti-adhesion, most of them suffer from drug-induced adverse effects. : In this study, a lecithin-based electrospun polylactic acid (PLA) nanofibrous membrane (L/P-NM) was developed for the prevention of postoperative abdominal adhesion, utilizing the hydration lubrication theory.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
This study reports the development of highly conductive and stretchable fibrous membranes based on PVDF/PAN conjugate electrospinning with embedded silver nanoparticles (AgNPs) for wearable sensing applications. The fabrication process integrated conjugate electrospinning of PVDF/PAN, selective dissolution of polyvinylpyrrolidone (PVP) to create porous networks, and uniform AgNP incorporation via adsorption-reduction. Systematic optimization revealed that 10 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!