Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896849 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1335058 | DOI Listing |
Am J Hematol
January 2025
Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy.
Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase ( ). This variant (rs3115534-G) is carried by ∼50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.
Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology and Metabolic Diseases, Erciyes University Faculty of Medicine, Kayseri, Turkey.
Background: Gaucheromas, pseudotumors composed of Gaucher cells, are rare complications of Gaucher's Disease (GD). They are usually seen in patients receiving enzyme replacement. Surgery is generally not recommended for these benign masses in treatment management.
View Article and Find Full Text PDFMol Genet Metab
January 2025
Medical Genetics Service, HCPA, UFRGS, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil; InRaras (National Institute of Science and Technology on Rare Diseases), Brazil.
Gaucher disease (GD) is a rare genetic disorder with multi-system involvement. Liver fibrosis is a long-term complication of GD, potentially leading to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. There are currently no validated clinical tools for the monitoring of liver fibrosis in patients with GD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!