The high rate of early recurrence in hepatocellular carcinoma (HCC) post curative surgical intervention poses a substantial clinical hurdle, impacting patient outcomes and complicating postoperative management. The advent of machine learning provides a unique opportunity to harness vast datasets, identifying subtle patterns and factors that elude conventional prognostic methods. Machine learning models, equipped with the ability to analyse intricate relationships within datasets, have shown promise in predicting outcomes in various medical disciplines. In the context of HCC, the application of machine learning to predict early recurrence holds potential for personalized postoperative care strategies. This editorial comments on the study carried out exploring the merits and efficacy of random survival forests (RSF) in identifying significant risk factors for recurrence, stratifying patients at low and high risk of HCC recurrence and comparing this to traditional COX proportional hazard models (CPH). In doing so, the study demonstrated that the RSF models are superior to traditional CPH models in predicting recurrence of HCC and represent a giant leap towards precision medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895597 | PMC |
http://dx.doi.org/10.3748/wjg.v30.i5.424 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFJMIR Med Educ
January 2025
Centre for Digital Transformation of Health, University of Melbourne, Carlton, Australia.
Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.
Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, United States.
Background: Large language models (LLMs) have demonstrated impressive performance on medical licensing and diagnosis-related exams. However, comparative evaluations to optimize LLM performance and ability in the domain of comprehensive medication management (CMM) are lacking. The purpose of this evaluation was to test various LLMs performance optimization strategies and performance on critical care pharmacotherapy questions used in the assessment of Doctor of Pharmacy students.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!