Background And Purpose: In magnetic resonance imaging (MRI) only radiotherapy computed tomography (CT) is excluded. The method relies entirely on synthetic CT images generated from MRI. This study evaluates the compatibility of a commercial synthetic CT (sCT) with an accelerated commercial deep learning reconstruction (DLR) in MRI-only prostate radiotherapy.
Materials And Methods: For a group of 24 patients (cohort 1) the effects of DLR were studied in isolation. MRI data were reconstructed conventionally and with DLR from identical k-space data, and sCTs were generated for both reconstructions. The sCT quality, Hounsfield Unit (HU) and dosimetric impact were investigated. In another group of 15 patients (cohort 2) effects on sCT generation using accelerated MRI acquisition (40 % time reduction) reconstructed with DLR were investigated.
Results: sCT images from both cohorts, generated from DLR MRI data, were of clinically expected image quality. The mean dose differences for targets and organs at risks in cohort 1 were <0.06 Gy, corresponding to a 0.1 % prescribed dose difference. Similar dose differences were observed in cohort 2. Gamma pass rates for cohort 1 were 100 % for criteria 3 %/3mm, 2 %/2mm and 1 %/1mm for all dose levels. Mean error and mean absolute error inside the body, between sCTs, averaged over all cohort 1 subjects, were -1.1 ± 0.6 [-2.4 0.2] and 2.9 ± 0.4 [2.3 3.9] HU, respectively.
Conclusions: DLR was suitable for sCT generation with clinically negligible differences in HU and calculated dose compared to the conventional MRI reconstruction method. For sCT generation DLR enables scan time reduction, without compromised sCT quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897922 | PMC |
http://dx.doi.org/10.1016/j.phro.2024.100557 | DOI Listing |
ACS Nano
March 2025
School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
The self-assemblies of topological complex block copolymers, especially the AB type miktoarm star ones, are fascinating topics in the soft matter field, which represent typical self-assembly behaviors analogous to those of biological membranes. However, their diverse topological asymmetries and versatile spontaneous curvatures result in rather complex phase separations that deviate significantly from the common mechanisms. Thus, numerous trial-and-error experiments with tremendous parameter space and intricate relationships are needed to study their assemblies.
View Article and Find Full Text PDFPlant Biotechnol J
March 2025
National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
The dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high-throughput root phenotyping poses a great challenge. In this study, we established a cost-effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits.
View Article and Find Full Text PDFGastroenterology
March 2025
APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland.
Inflammatory bowel disease (IBD) is marked by significant clinical heterogeneity, posing challenges for accurate diagnosis and personalized treatment strategies. Conventional approaches, such as endoscopy and histology, often fail to adequately and accurately predict medium and long-term outcomes, leading to suboptimal patient management. Artificial intelligence (AI) is emerging as a transformative force enabling standardized, accurate, and timely disease assessment and outcome prediction, including therapeutic response.
View Article and Find Full Text PDFArtif Intell Med
March 2025
Department of Advanced Computing Sciences, Maastricht University, The Netherlands. Electronic address:
Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical application. In this study, we aim to develop a deep learning framework to estimate heart surface potentials solely from body surface potentials, enabling wider clinical use.
View Article and Find Full Text PDFComput Biol Chem
March 2025
Scientific Research Management Department, Shanghai University, Shanghai, 200444, China. Electronic address:
Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a substantial challenge. This paper proposes a pocket-based multimodal deep learning model named PocketDTA for drug-target affinity prediction, based on the principle of "structure determines function".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!