Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol-ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents and fully aqueous systems are reported here for a range of biologically relevant peptide substrates. The use of a water soluble photoinitiator, Irgacure 2959, permitted synthesis of glycosylated peptides in fully aqueous conditions, obviating the need for addition of organic solvents and enhancing the green credentials of these rapid, photoactivated, bioconjugation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ob00122b | DOI Listing |
Commun Chem
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic.
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France.
SAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China.
Nanobodies (Nbs), the unique single-domain antibodies discovered in the species of Camelidae and sharks, are also known as the variable domain of the heavy chain of heavy-chain antibody (VHH). They offer strong antigen targeting and binding capabilities and overcome the drawbacks such as large size, low stability, high immunogenicity, and slow clearance of conventional antibodies. Nbs can be boosted by bioconjugation with toxins, enzymes, radioactive nucleotides, fluorophores, and other functional groups, demonstrating potential applications in the diagnosis and treatment of human and animal diseases.
View Article and Find Full Text PDFMol Omics
December 2024
Department of Chemistry and Biochemistry, University of Texas at Arlington, Box 19065, 700 Planetarium Place, Room 130, Arlington, TX 76019, USA.
Designing reagents for protein labeling is crucial for investigating cellular events and developing new therapeutics. Historically, much effort has been focused on labeling lysine and arginine residues due to their abundance on the protein periphery. The chemo-selectivity of these reagents is a challenging yet crucial parameter for deciphering properties specifically associated with the targeted amino acid.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!