Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip.

ACS Appl Mater Interfaces

School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: March 2024

Organs-on-chips (OoCs) support an organotypic human cell culture . Precise representation of basement membranes (BMs) is critical for mimicking physiological functions of tissue interfaces. Artificial membranes in polyester (PES) and polycarbonate (PC) commonly used in models and OoCs do not replicate the characteristics of the natural BMs, such as submicrometric thickness, selective permeability, and elasticity. This study introduces porous poly(d,l-lactic acid) (PDLLA) nanofilms for replicating BMs in models and demonstrates their integration into microfluidic chips. Using roll-to-roll gravure coating and polymer phase separation, we fabricated transparent ∼200 nm thick PDLLA films. These nanofilms are 60 times thinner and 27 times more elastic than PES membranes and show uniformly distributed pores of controlled diameter (0.4 to 1.6 μm), which favor cell compartmentalization and exchange of large water-soluble molecules. Human umbilical vein endothelial cells (HUVECs) on PDLLA nanofilms stretched across microchannels exhibited 97% viability, enhanced adhesion, and a higher proliferation rate compared to their performance on PES membranes and glass substrates. After 5 days of culture, HUVECs formed a functional barrier on suspended PDLLA nanofilms, confirmed by a more than 10-fold increase in transendothelial electrical resistance and blocked 150 kDa dextran diffusion. When integrated between two microfluidic channels and exposed to physiological shear stress, despite their ultrathin thickness, PDLLA nanofilms upheld their integrity and efficiently maintained separation of the channels. The successful formation of an adherent endothelium and the coculture of HUVECs and human astrocytes on either side of the suspended nanofilm validate it as an artificial BM for OoCs. Its submicrometric thickness guarantees intimate contact, a key feature to mimic the blood-brain barrier and to study paracrine signaling between the two cell types. In summary, porous PDLLA nanofilms hold the potential for improving the accuracy and physiological relevance of the OoC as models and drug discovery tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941076PMC
http://dx.doi.org/10.1021/acsami.3c16134DOI Listing

Publication Analysis

Top Keywords

pdlla nanofilms
20
submicrometric thickness
8
pes membranes
8
nanofilms
7
pdlla
6
porous polymeric
4
polymeric nanofilms
4
nanofilms recreating
4
recreating basement
4
basement membrane
4

Similar Publications

Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip.

ACS Appl Mater Interfaces

March 2024

School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, United Kingdom.

Organs-on-chips (OoCs) support an organotypic human cell culture . Precise representation of basement membranes (BMs) is critical for mimicking physiological functions of tissue interfaces. Artificial membranes in polyester (PES) and polycarbonate (PC) commonly used in models and OoCs do not replicate the characteristics of the natural BMs, such as submicrometric thickness, selective permeability, and elasticity.

View Article and Find Full Text PDF

Within cellular barriers, cells are separated by basement membranes (BMs), nanometer-thick extracellular matrix layers. In existing in-vitro cellular-barrier models, cell-to-cell signaling can be preserved by culturing different cells in individual chambers separated by a semipermeable membrane. Their structure does not always replicate the BM thickness nor diffusion through it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!