Genetic variation in the triosephosphate isomerase gene of the fall armyworm and its distribution across China.

Insect Sci

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.

Published: December 2024

The fall armyworm (FAW), Spodoptera frugiperda, has colonized and caused consistent damage in the Eastern hemisphere. The identification of various FAW strains is essential for developing precise prevention and control measures. The triosephosphate isomerase (Tpi) gene is recognized as an effective marker closely linked to FAW subpopulations. However, most current studies primarily focus on the comparison of variations in specific gene sites of this gene. In this study, we conducted full-length sequencing of the Tpi genes from 5 representative FAW groups. Our findings revealed that the Tpi genes varied in length from 1220 to 1420 bp, with the primary variation occurring within 4 introns. Notably, the exon lengths remained consistent, at 747 bp, with 37 observed base variations; however, no amino acid variations were detected. Through sequence alignment, we identified 8 stable variation sites that can be used to distinguish FAW strains in the Eastern hemisphere. Additionally, we performed strain identification on 1569 FAW samples collected from 19 provinces in China between 2020 and 2021. The extensive analysis indicated the absence of the rice strain in the samples. Instead, we only detected the presence of the corn strain and the Zambia strain, with the Zambia strain being distributed in a very low proportion (3.44%). Furthermore, the corn strain could be further categorized into 2 subgroups. This comprehensive study provides a valuable reference for enhancing our understanding of FAW population differentiation and for improving monitoring and early warning efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.13348DOI Listing

Publication Analysis

Top Keywords

triosephosphate isomerase
8
fall armyworm
8
eastern hemisphere
8
faw strains
8
tpi genes
8
corn strain
8
strain zambia
8
zambia strain
8
faw
7
strain
6

Similar Publications

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Interplay between tobacco curly shoot virus vsiRNA24 and triosephosphate isomerase: implications for Nicotiana benthamiana viral defense.

New Phytol

December 2024

Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Virus-derived small interfering RNAs (vsiRNAs) play an important role in viral infection by regulating the expression of host genes. At present, research on the regulation of plant primary metabolic pathways by vsiRNAs is very limited. TvsiRNA24 derived from tobacco curly shoot virus (TbCSV) was amplified by reverse transcription polymerase chain reaction, and its target gene NbTPI (triosephosphate isomerase) was verified using reverse transcription quantitative polymerase chain reaction and GFP fluorescence observation.

View Article and Find Full Text PDF

We report the first implementation of ion mobility mass spectrometry combined with an ultrahigh throughput sample introduction technology for high-throughput screening (HTS). The system integrates differential mobility spectrometry (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the substrates and products of isomerase-mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens, offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

Background: Giardia duodenalis (G. duodenalis) is an intestinal protozoan parasite of human and animal hosts. The present study investigated and compared the assemblages of G.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) has high mortality and rehospitalization rates, prompting research into new treatments like Jianxin (JX) granules, a Traditional Chinese Medicine formulation that needs further study for its effectiveness and mechanisms.
  • In a study using rats with HF induced by coronary artery ligation, researchers compared JX granules to a model group and standard treatment (Sacubitril/Valsartan) over four weeks, analyzing heart function and various cellular factors.
  • Results showed JX granules significantly improved heart performance by enhancing factors like left ventricular ejection fraction and reducing harmful conditions like cardiac fibrosis and oxidative stress, indicating potential as a therapeutic option for HF.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!