Luteoviruses (family ) and poleroviruses (family ) are economically important pathogens of cereals such as wheat (), barley () and oat (). In Australia, the luteoviruses barley yellow dwarf virus PAV (BYDV PAV) and barley yellow dwarf virus MAV (BYDV MAV), along with the poleroviruses cereal yellow dwarf virus RPV (CYDV RPV) and maize yellow dwarf virus RMV (MYDV RMV), were distinguished from each other and reported in the 1980s (Sward and Lister 1988; Waterhouse and Helms 1985). The poleroviruses barley virus G (BVG) and cereal yellow dwarf virus RPS (CYDV RPS) were reported in Australia more recently (Nancarrow et al. 2019; Nancarrow et al. 2023), while the luteovirus barley yellow dwarf virus PAS (BYDV PAS) has not previously been reported in Australia. During 2010, an oat plant exhibiting yellow/ red leaf discoloration and stunted growth was collected from a roadside in Horsham, Victoria, Australia. The plant tested positive for BYDV PAV and negative for BYDV MAV, CYDV RPV and MYDV RMV by tissue blot immunoassay (TBIA) as described by Trębicki et al (2017). The virus isolate has since been continuously maintained in a glasshouse in live wheat plants using aphids (). In 2021, total RNA extracted from a wheat plant infected with this isolate (Nancarrow et al. 2023) tested positive for BYDV PAV by RT-PCR using the primers BYDV-1/BYDV-2 (Rastgou et al. 2005), but negative for BYDV PAV, CYDV RPV and MYDV RMV using other published primers (Deb and Anderson 2008). A high-throughput sequencing (HTS) library was prepared from the total RNA with the NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB) without ribosomal RNA depletion and sequenced on a NovaSeq 6000 (Illumina). Raw reads were trimmed and filtered using fastp v0.20.0 (Chen et al. 2018) while de novo assembly of all of the resulting 5,049,052 reads was done using SPAdes v3.15.3 (Nurk et al. 2017). BLASTn analysis of the resulting 4,067 contigs (128- 12,457 bp in length) revealed only one large virus-like contig (5,649 bp) which was most similar to BYDV PAS isolates on NCBI GenBank, sharing 87% nucleotide (nt) identity with BYDV PAS isolate OH2 (MN128939), 86% nt identity with the BYDV PAS reference sequence (NC_002160) and 82% nt identity with the BYDV PAV reference sequence (NC_004750). Additionally, 4,008 HTS reads were mapped to the assembled genome sequence with Bowtie2 v2.4.5. (Langmead and Salzberg 2012) with 100% genome coverage and an average coverage depth of 101X. Primers were designed to the assembled genome sequence to generate overlapping amplicons across the genome, and the resulting amplicons were Sanger sequenced. This confirmed the genome sequence of BYDV PAS isolate PT from Australia (5649 bp, GC content 47.9%), which was deposited in GenBank (LC782749). Ten additional plant samples collected from western Victoria, Australia, all tested positive for BYDV PAS by RT-PCR using the primers PASF and PASR (Laney et al. 2018). The additional samples consisted of one oat sample collected in 2005, one barley sample collected in 2007, three wheat samples collected in 2016 and one barley, one brome grass ( sp.) and three wheat samples collected in 2020. BYDV PAS is also efficiently transmitted by but is often more prevalent and severe than BYDV PAV; it can also overcome some sources of virus resistance that are effective against BYDV PAV (Chay et al. 1996, Robertson and French 2007). To our knowledge, this is the first report of BYDV PAS in Australia. Further work is needed to determine the extent of its distribution, incidence, impacts and epidemiology in Australia, along with its relationship to other BYDV PAS isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-10-23-2195-PDN | DOI Listing |
Plant Dis
February 2024
Macquarie University, 7788, Applied BioSciences, Sydney, New South Wales, Australia.
Luteoviruses (family ) and poleroviruses (family ) are economically important pathogens of cereals such as wheat (), barley () and oat (). In Australia, the luteoviruses barley yellow dwarf virus PAV (BYDV PAV) and barley yellow dwarf virus MAV (BYDV MAV), along with the poleroviruses cereal yellow dwarf virus RPV (CYDV RPV) and maize yellow dwarf virus RMV (MYDV RMV), were distinguished from each other and reported in the 1980s (Sward and Lister 1988; Waterhouse and Helms 1985). The poleroviruses barley virus G (BVG) and cereal yellow dwarf virus RPS (CYDV RPS) were reported in Australia more recently (Nancarrow et al.
View Article and Find Full Text PDFPlants (Basel)
October 2023
Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, 60-318 Poznań, Poland.
Barley yellow dwarf is a threat to cereal crops worldwide. Barley yellow dwarf virus-PAS (BYDV-PAS) was detected for the first time in Poland in 2015, then in 2019. In the spring of 2021, in several locations in Poland, winter wheat and barley plants with dwarfism and leaf yellowing were collected.
View Article and Find Full Text PDFVirol J
June 2023
College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
Barley yellow dwarf virus (BYDV) has caused considerable losses in the global production of grain crops such as wheat, barley and maize. We investigated the phylodynamics of the virus by analysing 379 and 485 nucleotide sequences of the genes encoding the coat protein and movement protein, respectively. The maximum clade credibility tree indicated that BYDV-GAV and BYDV-MAV, BYDV-PAV and BYDV-PAS share the same evolutionary lineage, respectively.
View Article and Find Full Text PDFPlants (Basel)
January 2022
Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Korea.
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats ( L.) has recently been increased in Korea.
View Article and Find Full Text PDFFront Microbiol
May 2021
Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Worldwide, barley/cereal yellow dwarf viruses (YDVs) are the most widespread and damaging group of cereal viruses. In this study, we applied high-throughput sequencing technologies (HTS) to perform a virus survey on symptomatic plants from 47 cereal fields in Estonia. HTS allowed the assembly of complete genome sequences for 22 isolates of cereal yellow dwarf virus RPS, barley yellow dwarf virus GAV, barley yellow dwarf virus PAS (BYDV-PAS), barley yellow dwarf virus PAV (BYDV-PAV), and barley yellow dwarf virus OYV (BYDV-OYV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!