Background: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated.
Results: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency.
Conclusions: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898187 | PMC |
http://dx.doi.org/10.1186/s13059-024-03203-z | DOI Listing |
BMC Plant Biol
January 2025
State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
Tartary buckwheat (Fagopyrum tataricum) is an important crop used for edible food and medicinal usage. Drought annually brings reduction in crop yield and quality, causing enormous economic losses. Transcription factors are often involved in the regulation of plant responses to environmental stresses.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
The processing properties of resistant starch (RS) and its digestion remain unclear, despite the widespread use of autoclaving combined with debranching in its preparation. In this study, the physicochemical, rheological and digestibility properties of autoclaving modified starch (ACB), autoclaving-pullulanase modified starch (ACPB) and native black Tartary buckwheat starch (NB) were compared and investigated. The molecular weight and polydispersity index of modified starch was in the range of 0.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
Background: Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
Background: The β-glucosidases (BGLU) of glycoside hydrolase family 1 hydrolyze the glycosidic bond to release β-D-glucose and related ligands, which are widely involved in important physiological processes in plants. Genome-wide analysis of the BGLU genes in the model crops Arabidopsis thaliana and Oryza sativa revealed that they are functionally diverse. In contrast, the BGLU gene family in Tartary buckwheat remains unclear.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Tartary buckwheat is characterized by its numerous inflorescences; however, the uneven distribution of resources can lead to an overload in certain areas, significantly limiting plant productivity. Plant growth regulators effectively modulate plant growth and development. This study investigated the effects of three concentrations of brassinosteroids (EBR) on the Tartary buckwheat cultivar with high seed-setting rates, specifically Chuanqiao No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!