AI Article Synopsis

  • Cancer cells can overexpress CD47, blocking immune responses by preventing macrophages from eliminating them; this study focuses on how HDAC6 inhibitors (like Nexturastat A) can affect this process.
  • Researchers tested HDAC6 inhibitors on macrophages to see how these drugs can modify the CD47/SIRPα interaction and increase phagocytosis, with experiments conducted in both lab settings and mouse models.
  • The findings showed that HDAC6 inhibitors promote a shift toward antitumoral macrophages, reducing SIRPα levels and CD47 expression, ultimately enhancing the macrophages' ability to phagocytose melanoma cells when combined with anti-CD47 antibodies.

Article Abstract

Background: Cancer cells can overexpress CD47, an innate immune checkpoint that prevents phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) expressed in macrophages and other myeloid cells. Several clinical trials have reported that CD47 blockade reduces tumor growth in hematological malignancies. However, CD47 blockade has shown modest results in solid tumors, including melanoma. Our group has demonstrated that histone deacetylase 6 inhibitors (HDAC6is) have immunomodulatory properties, such as controlling macrophage phenotype and inflammatory properties. However, the molecular and cellular mechanisms controlling these processes are not fully understood. In this study, we evaluated the role of HDAC6 in regulating the CD47/SIRPα axis and phagocytosis in macrophages.

Methods: We tested the role of HDAC6is, especially Nexturastat A, in regulating macrophage phenotype and phagocytic function using bone marrow-derived macrophages and macrophage cell lines. The modulation of the CD47/SIRPα axis and phagocytosis by HDAC6is was investigated using murine and human melanoma cell lines and macrophages. Phagocytosis was evaluated via coculture assays of macrophages and melanoma cells by flow cytometry and immunofluorescence. Lastly, to evaluate the antitumor activity of Nexturastat A in combination with anti-CD47 or anti-SIRPα antibodies, we performed in vivo studies using the SM1 and/or B16F10 melanoma mouse models.

Results: We observed that HDAC6is enhanced the phenotype of antitumoral M1 macrophages while decreasing the protumoral M2 phenotype. In addition, HDAC6 inhibition diminished the expression of SIRPα, increased the expression of other pro-phagocytic signals in macrophages, and downregulated CD47 expression in mouse and human melanoma cells. This regulatory role on the CD47/SIRPα axis translated into enhanced antitumoral phagocytic capacity of macrophages treated with Nexturastat A and anti-CD47. We also observed that the systemic administration of HDAC6i enhanced the in vivo antitumor activity of anti-CD47 blockade in melanoma by modulating macrophage and natural killer cells in the tumor microenvironment. However, Nexturastat A did not enhance the antitumor activity of anti-SIRPα despite its modulation of macrophage populations in the SM1 tumor microenvironment.

Conclusions: Our results demonstrate the critical regulatory role of HDAC6 in phagocytosis and innate immunity for the first time, further underscoring the use of these inhibitors to potentiate CD47 immune checkpoint blockade therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898070PMC
http://dx.doi.org/10.1186/s13046-024-02982-4DOI Listing

Publication Analysis

Top Keywords

cd47/sirpα axis
12
antitumor activity
12
immune checkpoint
8
cd47 blockade
8
macrophage phenotype
8
role hdac6
8
axis phagocytosis
8
cell lines
8
human melanoma
8
melanoma cells
8

Similar Publications

CD47 interacts with signal regulatory protein alpha (SIRPα) on macrophages to deliver an anti-phagocytic signal, enabling tumor cells to evade immune destruction. This study explores the relationship between CD47 and SIRPα expression and key clinical prognostic factors, microvascular density (MVD), and tumor-infiltrating lymphocytes (TIL) in Diffuse Large B Cell Lymphoma (DLBCL) cases. We analyzed tissue samples from 122 DLBCL cases using tissue microarray (TMA) blocks and immunohistochemical staining for CD47, SIRPα, CD31, and CD3.

View Article and Find Full Text PDF

Microglia membrane-mediated trans-blood-brain barrier prodrug micelles enhance phagocytosis for glioblastoma chemo-immunotherapy.

J Control Release

January 2025

College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China. Electronic address:

Glioblastoma-associated macrophages & microglia (GAMs) are critical immune cells within the glioblastoma (GBM) microenvironment. Their phagocytosis of GBM cells is crucial for initiating both innate and adaptive immune responses. GBM cells evade this immune attack by upregulating the anti-phagocytic molecule CD47 on their surface.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a serious condition that poses risks to human health and has significant economic implications; recent research highlights various factors, including cellular senescence, that contribute to this issue.
  • In an experimental study on male mice, sepsis was induced via cecal ligation and puncture, leading to noticeable pulmonary damage and increased markers associated with acute lung injury and cellular senescence.
  • The results revealed complex changes in senescence-related pathways, suggesting that while some markers decrease, others may increase during the early stages, pointing to the need for further research on the long-term impacts of sepsis on multiple organ systems.
View Article and Find Full Text PDF

PPAB001, a novel bispecific antibody against CD47 and CD24, enhances anti-PD-L1 efficacy in triple-negative breast cancer via reprogramming tumor-associated macrophages towards M1 phenotype.

Int Immunopharmacol

January 2025

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China. Electronic address:

Triple-negative breast cancer (TNBC) is a biologically aggressive tumor with a strong association with a high recurrence rate and poor prognosis. Although anti-PD-L1 antibody, Tecentriq has been approved by FDA for treating TNBC, the overall response rate (ORR) is still generally less than 20 %. PPAB001 is a novel bispecific antibody simultaneously targeting CD47 and CD24.

View Article and Find Full Text PDF

Background: Although oxidative stress is strongly connected to the initiation and progression of cancer, the underlying molecular pathways remain unknown. The redox regulator CNC-bZIPs are important transcription factor groups that mediate the interplay of environmental cues and intercellular homeostasis. Immune checkpoint molecules (ICMs) are key molecules that mediate the communication between immune cells and tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!