Molecular basis of chromatin remodelling by DDM1 involved in plant DNA methylation.

Nat Plants

Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Published: March 2024

Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeF-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeF-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-024-01640-zDOI Listing

Publication Analysis

Top Keywords

chromatin remodelling
12
dna methylation
12
molecular basis
8
chromatin
8
basis chromatin
8
remodelling ddm1
8
chromatin remodellers
8
adp-bef-bound adp-bound
8
adp-bound nucleotide-free
8
nucleosomal dna
8

Similar Publications

White-Sutton syndrome (WHSUS) is a rare neurodevelopmental disorder caused by heterozygous variants in the POGZ gene. With slightly over 100 reported cases, the diagnosis of WHSUS remains challenging due to its variable and non-specific clinical features. We report a novel case of WHSUS carrying a heterozygous de novo variant in the POGZ gene and with characteristic clinical features including global developmental delay, autism spectrum disorder, generalised myoclonic epilepsy, hypotonia and distinct dysmorphic features.

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases.

Clin Rev Allergy Immunol

December 2024

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.

The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.

View Article and Find Full Text PDF

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

Regulation of the Hedgehog pathway activity may be supported by coactivators and corepresors of its main effectors- Gli transcription factors. While activation processes are well studied, repression mechanisms remain elusive. We identified chromatin remodelling complex Hira to interact with Gli3R protein, showed that its loss-of-function changes Hh pathway activity, and examined possible mechanism behind the observed effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!