Ultrasound is a widespread imaging modality, with special application in medical fields such as nephrology. However, automated approaches for ultrasound renal interpretation still pose some challenges: (1) the need for manual supervision by experts at various stages of the system, which prevents its adoption in primary healthcare, and (2) their limited considered taxonomy (e.g., reduced number of pathologies), which makes them unsuitable for training practitioners and providing support to experts. This paper proposes a fully automated computer-aided diagnosis system for ultrasound renal imaging addressing both of these challenges. Our system is based in a multi-task architecture, which is implemented by a three-branched convolutional neural network and is capable of segmenting the kidney and detecting global and local pathologies with no need of human interaction during diagnosis. The integration of different image perspectives at distinct granularities enhanced the proposed diagnosis. We employ a large (1985 images) and demanding ultrasound renal imaging database, publicly released with the system and annotated on the basis of an exhaustive taxonomy of two global and nine local pathologies (including cysts, lithiasis, hydronephrosis, angiomyolipoma), establishing a benchmark for ultrasound renal interpretation. Experiments show that our proposed method outperforms several state-of-the-art methods in both segmentation and diagnosis tasks and leverages the combination of global and local image information to improve the diagnosis. Our results, with a 87.41% of AUC in healthy-pathological diagnosis and 81.90% in multi-pathological diagnosis, support the use of our system as a helpful tool in the healthcare system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300425 | PMC |
http://dx.doi.org/10.1007/s10278-024-01055-4 | DOI Listing |
Sci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Paediatric Nephrology Centre, Hong Kong Children's Hospital, Hong Kong, Hong Kong SAR.
Background: This study aimed to evaluate the incidence, contributing factors, and clinical outcomes of acquired cystic kidney disease (ACKD) in children undergoing kidney replacement therapy (KRT).
Methods: We conducted a cross-sectional, territory-wide study at the designated pediatric nephrology center in Hong Kong. ACKD was defined as the presence of ≥ 3 cysts in the native kidneys, excluding congenital or hereditary cystic diseases.
J Nephrol
January 2025
Department of Medicine, Surgery and Neurosciences, Nephrology, Dialysis and Transplantation Unit, University Hospital of Siena, Siena, Italy.
Background: Renal functional reserve (RFR) measures the difference between the stimulated glomerular filtration rate (GFR) and the baseline GFR to detect early signs of renal functional decline. The protein load test (RFR-T) is the gold standard for RFR assessment but is a complicated procedure. Renal intraparenchymal resistance index (RRI) variation test (DRRI-T) is a non-invasive method to measure renal function reserve using ultrasound.
View Article and Find Full Text PDFBMJ Open
January 2025
Bio Heart Cardiovascular Diseases Research Group, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain.
Introduction: Chronic hand ischaemia may affect some haemodialysis patients with an arteriovenous fistula (AVF) or graft (AVG), a condition known as haemodialysis access-induced distal ischaemia (HAIDI). Duplex ultrasonography (DUS) can provide comprehensive insights into anatomical and perfusion properties, and measuring the hand acceleration time (HAT) has been demonstrated to be sensitive within the framework of chronic upper limb ischaemia.
Methods And Analysis: This single-centre, prospective cohort study will involve adult end-stage renal disease (ESRD) patients requiring either AVF or AVG for haemodialysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!