As a promising alternative to conventional antibiotic drugs in the biomedical field, functional peptide has been widely used in disease treatment owing to its low toxicity, high absorption rate, and biological activity. Recently, several machine learning methods have been developed for functional peptide prediction. However, the main research heavily relies on statistical features and few consider multifunctional peptide identification. So, we propose SME-MFP, a novel predictor in the imbalanced multi-label functional peptide datasets. First, we employ physicochemical and evolutionary information to represent the peptide sequence's initialization features from multiple perspectives. Second, the features are fused and then put into spatial feature extractors, where the residual connection and multiscale convolutional neural network extract more discriminative features of different lengths' peptide sequences. Besides, we also design AFT-based temporal feature extractors to fully capture the global interactions of the sequences. Finally, devising a new loss to replace the traditional cross entropy loss to settle the class imbalance problems. The results show that our framework not only enhances the model's ability to capture sequence features effectively, but also accuracy improves by 3.89% over existing methods on public peptide datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108033DOI Listing

Publication Analysis

Top Keywords

functional peptide
12
sme-mfp novel
8
neural network
8
peptide datasets
8
feature extractors
8
peptide
7
features
5
novel spatiotemporal
4
spatiotemporal neural
4
network multiangle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!