A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The added value of temporal data and the best way to handle it: A use-case for atrial fibrillation using general practitioner data. | LitMetric

The added value of temporal data and the best way to handle it: A use-case for atrial fibrillation using general practitioner data.

Comput Biol Med

Quantitative Data Analytics Group, Department of Computer Science, VU Amsterdam, Amsterdam, the Netherlands.

Published: March 2024

Introduction: Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data.

Methods: Three datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality.

Results: Algorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length.

Conclusion: Temporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108097DOI Listing

Publication Analysis

Top Keywords

temporal data
12
prediction windows
12
360 days
12
lstm ckconv
12
temporal
8
atrial fibrillation
8
fibrillation general
8
general practitioner
8
handle temporal
8
non-temporal models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!