A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities. | LitMetric

AI Article Synopsis

  • A study was conducted to create a deep learning model that detects superior mesenteric artery (SMA) abnormalities using plain CT images, addressing the challenges presented by atypical symptoms and the limitations of standard CT scans.
  • The research involved analyzing data from 1,048 patients, split into different cohorts, and developing five YOLOv8-based deep learning submodels, with the YOLOv8x model showing the best performance compared to clinical models and radiologists.
  • YOLOv8x achieved a higher area under the curve (AUC) and improved sensitivity and specificity over both the clinical model and radiologist assessments, suggesting it could enhance early diagnosis and overall treatment outcomes for SMA conditions.

Article Abstract

Objectives: Atypical presentations, lack of biomarkers, and low sensitivity of plain CT can delay the diagnosis of superior mesenteric artery (SMA) abnormalities, resulting in poor clinical outcomes. Our study aims to develop a deep learning (DL) model for detecting SMA abnormalities in plain CT and evaluate its performance in comparison with a clinical model and radiologist assessment.

Materials And Methods: A total of 1048 patients comprised the internal (474 patients with SMA abnormalities, 474 controls) and external testing (50 patients with SMA abnormalities, 50 controls) cohorts. The internal cohort was divided into the training cohort (n = 776), validation cohort (n = 86), and internal testing cohort (n = 86). A total of 5 You Only Look Once version 8 (YOLOv8)-based DL submodels were developed, and the performance of the optimal submodel was compared with that of a clinical model and of experienced radiologists.

Results: Of the submodels, YOLOv8x had the best performance. The area under the curve (AUC) of the YOLOv8x submodel was higher than that of the clinical model (internal test set: 0.990 vs 0.878, P =.002; external test set: 0.967 vs 0.912, P =.140) and that of all radiologists (P <.001). The YOLOv8x submodel, when compared with radiologist assessment, demonstrated higher sensitivity (internal test set: 100.0 % vs 70.7 %, P =.002; external test set: 96.0 % vs 68.8 %, P <.001) and specificity (internal test set: 90.7 % vs 66.0 %, P =.025; external test set: = 88.0 % vs 66.0 %, P <.001).

Conclusion: Using plain CT images, YOLOv8x was able to efficiently identify cases of SMA abnormalities. This could potentially improve early diagnosis accuracy and thus improve clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111388DOI Listing

Publication Analysis

Top Keywords

sma abnormalities
16
clinical model
12
deep learning
8
superior mesenteric
8
mesenteric artery
8
patients sma
8
cohort n = 86
8
test set
8
abnormalities
5
learning algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!