Combining high efficiency with good radiation tolerance, perovskite solar cells (PSCs) are promising candidates to upend expanding space photovoltaic (PV) technologies. Successful employment in a Near-Earth space environment, however, requires high resistance against atomic oxygen (AtOx). This work unravels AtOx-induced degradation mechanisms of PSCs with and without phenethylammonium iodide (PEAI) based 2D-passivation and investigates the applicability of ultrathin silicon oxide (SiO) encapsulation as AtOx barrier. AtOx exposure for 2 h degraded the average power conversion efficiency (PCE) of devices without barrier encapsulation by 40% and 43% (w/o and with 2D-PEAI-passivation) of their initial PCE. In contrast, devices with a SiO-barrier retained over 97% of initial PCE. To understand why 2D-PEAI passivated devices degrade faster than less efficient non-passivated devices, various opto-electrical and structural characterications are conducted. Together, these allowed to decouple different damage mechanisms. Notably, pseudo-J-V curves reveal unchanged high implied fill factors (pFF) of 86.4% and 86.2% in non-passivated and passivated devices, suggesting that degradation of the perovskite absorber itself is not dominating. Instead, inefficient charge extraction and mobile ions, due to a swiftly degrading PEAI interlayer are the primary causes of AtOx-induced device performance degradation in passivated devices, whereas a large ionic FF loss limits non-passivated devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311097 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Grundlagen von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFACS Nano
January 2025
School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia.
Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Chemistry, HONG KONG.
Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!