Contribution of Global Amyloid-PET Imaging for Predicting Future Cognition in the MEMENTO Cohort.

Neurology

From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco.

Published: March 2024

Background And Objectives: Global amyloid-PET is associated with cognition and cognitive decline, but most research on this association does not account for past cognitive information. We assessed the prognostic benefit of amyloid-PET measures for future cognition when prior cognitive assessments are available, evaluating the added value of amyloid measures beyond information on multiple past cognitive assessments.

Methods: The French MEMENTO cohort (a cohort of outpatients from French research memory centers to improve knowledge on Alzheimer disease and related disorders) includes older outpatients with incipient cognitive changes, but no dementia diagnosis at inclusion. Global amyloid burden was assessed using positron emission tomography (amyloid-PET) for a subset of participants; semiannual cognitive testing was subsequently performed. We predicted mini-mental state examination (MMSE) scores using demographic characteristics (age, sex, marital status, and education) alone or in combination with information on prior cognitive measures. The added value of amyloid burden as a predictor in these models was evaluated with percent reduction of the mean squared error (MSE). All models were conducted separately for evaluating the added value of dichotomous amyloid positivity status compared with a continuous amyloid-standardized uptake-value ratio.

Results: Our analytic sample comprised 510 individuals who underwent amyloid-PET scans with at least 4 MMSE assessments. The mean age at the PET scan was 71.6 (standard deviation 7.4) years; 60.7% were female. The median follow-up was 4.6 years (interquartile range: 0.9 years). Adding amyloid burden when adjusting for only demographic characteristics reduced the MSE of predictions by 5.08% (95% CI 0.97%-10.86%) and 12.64% (95% CI 3.35%-25.28%) for binary and continuous amyloid, respectively. If the model included 1 past MMSE measure, the MSE improvement was 3.51% (95% CI 1.01%-7.28%) when adding binary amyloid and 8.83% (95% CI 2.63%-16.37%) when adding continuous amyloid. Improvements in model fit were smaller with the addition of amyloid burden when more than 1 past cognitive assessment was included. For all models incorporating past cognitive assessments, differences in predictions amounted to a fraction of 1 MMSE point on average.

Discussion: In a clinical setting, global amyloid burden did not appreciably improve cognitive predictions when past cognitive assessments were available.

Trial Registration Information: ClinicalTrials.gov Identifier: NCT02164643.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000208054DOI Listing

Publication Analysis

Top Keywords

amyloid burden
20
cognitive assessments
12
cognitive
11
amyloid
10
global amyloid-pet
8
future cognition
8
memento cohort
8
prior cognitive
8
global amyloid
8
demographic characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!