Low-cost and nontoxic deep eutectic liquid electrolytes (DELEs), such as [AlCl][Urea] (AU), are promising for rechargeable non-aqueous aluminum metal batteries (AMBs). However, their high viscosity and sluggish ion transport at room temperature lead to high cell polarization and low specific capacity, limiting their practical application. Herein, non-solvating 1,2-difluorobenzene (dFBn) is proposed as a co-solvent of DELEs using AU as model to construct a locally concentrated deep eutectic liquid electrolyte (LC-DELE). dFBn effectively improves the fluidity and ion transport without affecting the ionic dynamics in the electrolyte. Moreover, dFBn also modifies the solid electrolyte interphase growing on the aluminum metal anodes and reduces the interfacial resistance. As a result, the lifespan of Al/Al cells is improved from 210 to 2000 h, and the cell polarization is reduced from 0.36 to 0.14 V at 1.0 mA cm. The rate performance of Al-graphite cells is greatly improved with a polarization reduction of 0.15 and 0.74 V at 0.1 and 1 A g, respectively. The initial discharge capacity of Al-sulfur cells is improved from 94 to 1640 mAh g. This work provides a feasible solution to the high polarization of AMBs employing DELEs and a new path to high-performance low-cost AMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202400263DOI Listing

Publication Analysis

Top Keywords

deep eutectic
12
aluminum metal
12
locally concentrated
8
concentrated deep
8
metal batteries
8
eutectic liquid
8
ion transport
8
cell polarization
8
cells improved
8
eutectic liquids
4

Similar Publications

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Deep eutectic solution elution assisted ligand affinity assay: A useful tool for the active coumarins screening from Fructus cnidii.

Anal Chim Acta

January 2025

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:

Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.

View Article and Find Full Text PDF

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Nano structural regulation of lignin and evaluation of its ultraviolet light absorption properties through quantum chemistry calculations.

Int J Biol Macromol

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Lignin, a biomass-derived material containing chromophores, possesses the potential to serve as a versatile organic ultraviolet (UV) light screening agent. By employing quantum chemical computation techniques, an amphoteric deep eutectic solvent (DES) based on sulfamic acid was purposefully designed and engineered to create a solvent system tailored for the nanoparticle formation and functionalization of lignin. As confirmed by experimental evidence, the size of the modified lignin nanoparticles (LNPs) varies from 168.

View Article and Find Full Text PDF

This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!