Removal of predators and creation of early seral habitat have, in many systems, caused substantial population growth of herbivores. Hyperabundant herbivores, in turn, induce cascading ecosystem effects, but few studies have investigated long-term browser density trends in relation to succession and stochastic climate events. Here, we use annual, empirical population estimates of a forest browser to relate forest succession to long-term decline of an herbivore that prefers early seral habitat. From 2007-2021, concurrent with reduced timber harvest, we used line-transect distance sampling to document annual changes in Columbian black-tailed deer (Odocoileus hemionus columbianus) density on a mid-sized (17.3km2) predator-free island. We documented successional changes associated with forest aggradation and decreased forage quality for deer: early successional shrub/scrub habitat declined 3.8%/year; timber volume increased 4.5%/year; and canopy coverage increased 2.5%. In 2007-2008, deer densities were the greatest observed (~44/km2), but then an historic snowstorm reduced deer density by 39%. From 2010-2021, as forests continued to mature, deer density decreased 4.0%/year, declining to 20 deer/km2. Using a multivariate approach to combine habitat variables (i.e., early seral coverage, timber volume, and canopy closure) into a measure of forest maturation, we found a significant negative relationship between deer density and forest aggradation. Thus, consistent with predictions for bottom-up limited browsers, we observed significant annual declines in a deer population throughout an extended period of forest regrowth. Despite declines, deer density on the island exceeds mainland densities, and overbrowsing likely continues to disrupt ecosystem processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898743 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298231 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!